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For our purpose a rhythm is represented as a
cyclic binary string. Consider the following three
12/8 time ternary rhythms expressed in box-like nota-
tion: [x . x . x . x . x . x .], [x . x . x x . x . x . x]
and [x . . . x x . . x x x .]. Here “x” denotes the
striking of a percussion instrument, and “.” denotes
a silence. It is intuitively clear that the first rhythm
is the most even (well spaced) of the three. Tradi-
tional rhythms have a tendency to exhibit such prop-
erties of evenness. Therefore mathematical measures
of evenness find application in the new field of math-
ematical ethnomusicology [2], [17], where they may
help to identify, if not explain, cultural preferences of
rhythms in traditional music.

Clough and Duthett [3] introduced the notion of
maximally even sets with respect to pitch scales rep-
resented on a circle. Block and Douthett [1] went fur-
ther by constructing several mathematical measures
of the amount of evenness contained in a scale. One of
their measures simply adds all the interval arc-lengths
(geodesics along the circle) determined by all pairs of
pitches in the scale. However, this measure is too
coarse to be useful for comparing rhythm timelines
such as those studied in [13] and [15]. Using inter-
val chord-lengths (as opposed to geodesic distances),
proposed by Block and Douthet [1], yields a more dis-
criminating measure, and is therefore a function that
receives more attention. In fact, this problem had
been investigated by Fejes Tóth [12] some forty years
earlier without the restriction of placing the points on
the circular lattice. He showed that the sum of the
pairwise distances determined by n points on a circle
is maximized when the points are the vertices of a
regular n-gon.

One may also examine the spectrum of the fre-
quencies with which all the durations are present
in a rhythm. In music theory this spectrum
is called the interval vector (or full-interval vec-
tor) [7]. For example, the interval vector for the clave
Son pattern [x . . x . . x . . . x . x . . .] is given by
[0,1,2,2,0,3,2,0].
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Examination of such rhythm histograms leads to
questions of interest in a variety of fields of en-
quiry: musicology, geometry, combinatorics, and
number theory. For example, David Locke [9]
has given musicological explanations for the char-
acterization of the Gahu bell pattern, given by
[x . . x . . x . . . x . . . x .], as “rhythmically po-
tent”, exhibiting a “tricky” quality, creating a “spi-
ralling effect”, causing “ambiguity of phrasing” lead-
ing to “aural illusions.” Comparing the full-interval
histogram of the Gahu pattern with the histograms of
other popular 4/4 time traditional clave-bell rhythms
leads to the observation that the Gahu is the only
pattern that has a histogram with a maximum height
of 2, and consisting of a single connected component
of occupied histogram cells.

In 1989 Paul Erdős [5] asked whether one could
find n points in the plane (no three on a line and no
four on a circle) so that for every i, i = 1, ...n − 1
there is a distance determined by these points that
occurs exactly i times. Solutions have been found for
2 ≤ n ≤ 8. A musical scale whose pitch intervals
are determined by points drawn on a circle, and that
has the property asked for by Erdős is known in mu-
sic theory as a deep scale [7]. We will transfer this
terminoly from the pitch domain to the time domain
and refer to cyclic rhythms with the Erdős property
as deep rhythms.

The analysis of cyclic rhythms suggests yet another
variant of the question asked by Erdős. From the
musicological point of view it is desirable (especially
in African timelines) not to allow empty semicircles.
Such constraints suggest the following problem. Is it
possible to have k points on a circular lattice of n

points so that for every i, i = ks, ks+1, ..., kf (s and
f are pre-specified) there is a geodesic distance that
occurs exactly i times, with the further restriction
that there is no empty semicircle?

These problems are closely related to the general
problem of reconstructing sets from interpoint dis-
tances: given a distance multiset, construct all point
sets that realize the distance multiset. This problem
has a long history in crystallography [8], and more
recently in DNA sequencing [11]. Two noncongruent
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sets of points are called homometric if the multisets
of their pairwise distances are the same [10].

The preceeding suggests that it would be desirable
to be able to eficiently generate rhythms that contain
prescribed histogram shapes, (such as deep rhythms)
and to find approximations when such rhythms do not
exist.

The problem of comparing two binary strings of the
same length with the same number of one’s suggests
an extremely simple edit operation called a swap. A
swap is an interchange of a one and a zero that are
adjacent to each other in the binary string. The swap
distance between two rhythms is the minimum num-
ber of swaps required to convert one rhythm to the
other.

Consider two n-bit (cyclic) binary strings, A and B,
represented on a circle (necklace instances). Let each
sequence have the same number k of 1’s. We are in-
terested in computing the necklace-swap-distance be-
tween A and B, i.e., the minimum number of swaps
needed to convert A to B, minimized over all rota-
tions of A. This distance may be computed in O(n2)
time by solving a linear time problem in each of the n

rotated positions. The open problem is whether the
O(n2) may be improved. In contrast, the necklace-

Hamming-distance may be computed in O(n log n)
time using the Fast Fourier Transform [6].

For additional discussion of the preceeding topics
the reader is referred to [13], [15], [14], [17], [16], [4],
and the references therein.
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[5] Paul Erdős. Distances with specified multiplici-
ties. American Math. Monthly, 96:447, 1989.

[6] D. Gusfield. Algorithms on Strings, Trees, and

Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press,
Cambridge, 1997.

[7] Timothy A. Johnson. Foundations of Diatonic

Theory: A Mathematically Based Approach to

Music Fundamentals. Key College Publishing,
Emeryville, California, 2003.

[8] Paul Lemke, Steven S. Skiena, and Warren D.
Smith. Reconstructing sets from interpoint dis-
tances. Tech. Rept. DIMACS-2002-37, 2002.

[9] David Locke. Drum Gahu: An Introduction to

African Rhythm. White Cliffs Media, Gilsum,
New Hampshire, 1998.

[10] Joseph Rosenblatt and Paul Seymour. The struc-
ture of homometric sets. SIAM Journal of Alge-

braic and Discrete Methods, 3:343–350, 1982.

[11] S. S. Skiena and G. Sundaram. A partial digest
approach to restriction site mapping. Bulletin of

Mathematical Biology, 56:275–294, 1994.
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