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Figure 1: Left, an isosurface of the UNC Head (109×256×256 MRI) shows mostly the skull: the contour tree is unmanageable (1,573,373
edges). Right, contour surfaces chosen using a simplified contour tree. (Annotation and colour chosen to emphasize the structure of the data.)

Abstract

The contour tree, an abstraction of a scalar field that encodes
the nesting relationships of isosurfaces, has several potential ap-
plications in scientific and medical visualization, but noise in
experimentally-acquired data results in unmanageably large trees.
We attach geometric properties of the contours to the branches of
the tree and apply simplification by persistence to reduce the size
of contour trees while preserving important features of the scalar
field.
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1 Introduction

The contour tree is a topological abstraction of a scalar field used in
scientific and medical visualization [BPS97; vKvOB+97; PCM02;
CSvdP04]. It represents changes in isosurface connectivity. In this
paper, we simplify the contour tree using geometric properties of
contours, permitting online simplification of the contour tree.

Figure 1 shows a conventional isosurface and a flexible isosur-
face [CS03] extracted from the same data set after contour tree sim-
plification. On the left, we see that the outermost surface (the skull)
occludes other surfaces, making it difficult to study structures in-
side the head, and the contour tree has too many edges to be useful.
On the right, we see the result of using the simplified contour tree
as an interface tool to enable a user to explore, color, and annotate
the contours – the structures inside the head can be seen in relation
to each other.

2 Related Work

The contour tree, a special case the Reeb graph [Ree46], is the re-
sult of contracting each contour in a scalar field to a single point;
it tracks how contours, connected components of isosurfaces of a
data set, appear, merge, split, and vanish as we vary the chosen iso-
value. Efficient algorithms for constructing the contour tree have

been reported for various meshes and interpolants [vKvOB+97;
CSA03; PCM02; CLLR02; TNTF04]; the contour tree has applica-
tions ranging from fast isosurface extraction [vKvOB+97; CS03]
and volume rendering [TNTF04] to mesh simplification, abstract
representation of scalar fields [BR63; BPS97] and contour manip-
ulation [CS03]. Unfortunately, noise in the input data can create
many new contours by creating local minima and maxima. For
noisy experimentally-acquired data such as the UNC head data set
shown in Figure 1, contour trees commonly have millions of edges
– too many to serve as a visual representation for the input data.

To simplify the contour tree, we would like to assign an importance
to each edge and collapse edges of lower importance. This is a sim-
ple case of the ideas of topological persistence [EHZ03; ELZ02;
BEHP03] applied to trees. Two works have applied persistence to
the isovalues: [HSKK01] simplify the Reeb graph using hierarchi-
cal quantization of the data values, which can introduce errors at
edges that span the quantization boundaries, and [TNTF04] sim-
plify the contour tree using data values. We allow any geometric
property to guide simplification (and are most efficient with decom-
posable properties, such as volume and surface area.)

3 Contour Tree Simplification

Given a contour tree and a scalar field, we simplify the contour tree
with graph operators, then reflect the simplication back to the input
data or use the simplified contour tree directly to extract individual
contours from the simplified data set.

To compute geometric measures for individual contours, we re-
place the single isovalued sweep in [BPS97] with multiple separate
sweeps of individual contours corresponding to sweeping individ-
ual points through the tree. Doing this requires combining partial
sweep results whenever a saddle in the tree is swept past. In three
dimensions, we can compute surface area, volume or hypervolume:
isovalue integrated inside the contour.

To simplify the contour tree, we then choose a leaf edge that cor-
responds to contours for which the chosen geometric property is
small and prune the leaf from the tree. By removing only leaves,



we guarantee that the structure remains a tree and corresponds to a
subregion of the scalar field in which isovalued contour sweeps can
still be performed without discontinuous jumps.

Leaf pruning can result in a redundant vertex in the tree, as in Fig-
ure 2. We remove such vertices with no loss of topological infor-
mation in the tree. Since there is no geometric cost to doing so, we
prefer these vertex simplications where available and also prefer
leaf prunes that maximize the number of future vertex simplifica-
tions.

Removing a leaf of the tree corresponds to flattening a local ex-
tremum of the data set as shown in Figure 2. By minimizing the
geometric cost of our simplification, we are able to achieve simpli-
fication of the tree by 4 orders of magnitude without causing signifi-
cant errors in the underlying field being represented, and preserving
details of the contours that remain.
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Figure 2: Leaf Pruning Levels Extrema; Vertex Reduction Leaves
Scalar Field Unchanged

4 Results and Discussion

We have tested this form of simplification on a variety of data sets
using the flexible isosurface interface [CS03]. In Figure 1, we show
a typical result using hypervolume as the importance measure. Con-
tours for the skull were not selected because they occlude the inter-
nal organs.
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Figure 3: A Pregnant Rat MRI (240×256×256). Despite low qual-
ity data, simplifying the contour tree from 2,943,748 to 125 edges
allows identification of several anatomical features.

Similarly, Figure 3 shows the result of a similar exploration of a
240× 256× 256, low-quality MRI scan of a rat from the Whole
Frog Project at http://www-itg.lbl.gov/ITG.hm.pg.
docs/Whole.Frog/Whole.Frog.html. Again, simplifica-
tion reduces the contour tree to a useful size. After using the
dot tool from the graphviz package (http://www.research.
att.com/sw/tools/graphviz/) to lay out the contour tree,
these images took less than 10 minutes to explore and annotate. The
result is purely a function of the topology of the isosurfaces of the
input data, and uses no special constants.

5 Conclusions and Future Work

We have presented a novel algorithm for the simplification of con-
tour trees based on local geometric measures. The algorithm is on-
line, meaning that simplifications can be done and undone at any
time. This addresses the scalability problems of the contour tree
in exploratory visualization of 3D scalar fields. The simplification
can also be reflected back onto the input data to produce an on-line
simplified scalar field. The algorithm is driven by local geometric
measures such as area and volume, which make the simplifications
meaningful. Moreover, the simplifications can be tailored to a par-
ticular application or data set.

Future directions of research include extension to vectors of geo-
metric measures, user-directed local simplification of the contour
tree, utilization of the contour tree as a query structure for geomet-
ric properties, application of similar methods to volume rendering
and to non-isovalue segmentation, extension to time-varying data
sets, parallelization and improvements to contour tree layout algo-
rithms.
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