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1 Introduction. In grocery stores around the
world, people fold and unfold countless paper bags
every day. The rectangular-bottomed paper bags
that we know today are manufactured in their 3D
shape, then folded flat for shipping and storage, and
later unfolded for use. This process was revolu-
tionized by Margaret Knight (1838–1914), who de-
signed a machine in 1867 for automatically gluing
and folding rectangular-bottomed paper bags [8].
Before then, paper bags were cut, glued, and folded
by hand. Knight’s machine effectively demolished
the working-class profession of “paper folder”.

Our work questions whether paper bags can be
truly (mathematically) folded and unfolded in the
way that happens many times daily in reality. More
precisely, we consider foldings that use a finite num-
ber of creases, between which the paper must stay
rigid and flat, as if the paper were made of plastic or
metal plates connected by hinges. Such foldings are
sometimes called rigid origami, being more restrictive
than general origami foldings, which allow continu-
ous bending and curving of the paper and thus effec-
tively uncountably infinite “creasing”. It is known
that essentially everything can be folded by a con-
tinuous origami folding [6], but that this is not the
case for rigid origami.

We prove that the rectangular-bottomed paper
bag cannot be folded flat or unfolded from its flat
state using the usual set of creases that are so com-
mon in reality—in fact, the bag cannot move at all
from either its folded or unfolded state. However,
we show that a different creasing of a paper bag en-
ables it to fold flat from its 3D state. We also con-
jecture a way to unfold a paper bag from its flat
state if it was already folded using the usual set of
creases (by an adversary equipped with techniques
from origami or reality).

2 Related Work. In the mathematical literature,
the closest work to rigid folding is rigidity. The fa-
mous Bellows Theorem of Connelly, Sabitov, and
Walz [4] says that any polyhedral piece of paper
forming a closed surface preserves its volume when
folded according to a finite number of creases. In
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Figure 1: A shopping bag with creases in the usual places.

contrast, as suggested by the existence of bellows
in the real world, it is possible to change the vol-
ume using origami folding. Even more fundamen-
tal are Cauchy’s rigidity theorem, Aleksandrov’s ex-
tension, and Connelly’s extension [2], which all es-
tablish an inability to fold a convex polyhedron us-
ing a finite number of creases. (In Cauchy’s case,
the creases must be precisely the edges of the poly-
hedron; in Connelly’s case, any finite set of addi-
tional creases can be placed; Aleksandrov’s theorem
is somewhere in between.) Another result of Con-
nelly1 is that a positive-curvature “corner” (the cycle
of facets surrounding a vertex in a convex polyhe-
dron) cannot be turned “inside-out” no matter how
we place finitely many additional creases; this result
answers a problem of Gardner [7]. In contrast, a pa-
per bag can be turned inside-out with an origami
folding (and in real life) [3].

Few papers discuss rigid origami directly. De-
maine and Demaine [5] present a family of origami
“bases” that can be folded rigidly. Streinu and
Whiteley [9] proved that any single-vertex crease
pattern can be folded rigidly—up to but not in-
cluded the moment at which multiple layers of pa-
per coincide. Balkcom and Mason [1] demonstrate
how some classes of origami can be rigidly folded
by a robot.

3 Main Results. Figure 1 shows a shopping bag
with the usual crease pattern, and dimensions w, l,
and h. For the bag shown, h > w/2, and l > w.

Our first main result states that a shopping bag
cannot be folded at all with just the usual creases:

Theorem 1 A shopping bag with the usual crease pat-
tern has a configuration space consisting of two isolated
points, corresponding to the fully-open and fully-closed
configurations.

1Personal communication, 1998.
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The results described in the previous section have
two immediate consequences if we allow finitely
many additional creases. First, the Bellows Theorem
implies that, if the shopping bag had a top, no finite
number of additional creases would allow the vol-
ume of the bag to be changed. Second, because the
corners of the bag are convex, no finite number of
additional creases would allow the shopping bag to
be turned inside-out.

Figure 2: A short
paper bag, similar
to a collapsible
department-store
gift box.

Based on these consequences,
it might seem that no finite set
of additional creases would al-
low a shopping bag to be folded
flat. Our second result shows the
opposite. A short shopping bag,
with h ≤ w/2, cannot have the
usual shopping bag crease pat-
tern, because the 45◦ creases do
not intersect on the interior of the
left and right sides of the bag; see
Figure 2. In this case, we show

Theorem 2 Every short shopping bag (with h ≤ w/2)
can be collapsed flat using the creases in Figure 2.

Now Theorem 2 suggests a method for folding a
tall shopping bag: add creases to allow the tall bag
to be telescoped until it is short enough to collapse
flat. Figure 3 shows an animation of our procedure
for shortening a bag by reducing h up to min{w, l}.
Using a sequence of these operations, we show

Theorem 3 A tall shopping bag can be collapsed flat
with the addition of finitely many creases.

Figure 4: Conjec-
tured creases for
unfolding an al-
ready folded pa-
per bag.

The collapsed state of the shop-
ping bag after applying the fold-
ing technique described in the
proof of theorem 3 is not the
same as the collapsed state of
the shopping bag with no ad-
ditional creases. This difference
suggests a more difficult ques-
tion: can a collapsed shopping
bag be opened up with the ad-
dition of a finite set of creases?
We conjecture that it can, and pro-
pose a possible crease pattern in
Figure 4.

Conjecture 1 A collapsed tall shopping bag can be un-
folded with the addtion of a finite number of creases.

If true, this conjecture would also offer a simpler
way to flatten a tall shopping bag.

Figure 3: Procedure for shortening a rectangular tube.
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