
On the Non-Redundancy of Split Offsets in Degree Coding

Martin Isenburg
isenburg@cs.unc.edu

Jack Snoeyink
snoeyink@cs.unc.edu

University of North Carolina at Chapel Hill

Abstract
The connectivity coder by Touma and Gotsman encodes
a planar triangulation through a sequence of vertex de-
grees and occasional “split” symbols that have an asso-
ciated offset value. We show that the split offsets of the
TG coder are not redundant by giving examples of degree
sequences that have two different decodings if the split
offsets are not specified. Surprisingly, such examples are
rare and a large number of encodings remain unique.

1 Introduction

Recent years have seen a number of schemes that com-
pactly encode triangle mesh connectivity by a sequence
of symbols that specify how to grow a “compression
boundary” enclosing an already encoded region, one tri-
angle at a time. A popular scheme is the Triangle Mesh
Compression method by Touma and Gotsman [7], or TG
coder for short. For planar triangulations, the TG coder
generates a sequence of vertex degrees that usually con-
tains a few “split” symbols with associated offset values.

There has been speculation that it might be possible to
modify the TG coder to operate without explicitly stor-
ing the offsets values. The Cut-border Machine [3] and
Dual-Graph Method [5] explicitly include split offsets,
but the otherwise identical Edgebreaker [6] and Face-
Fixer [4] schemes avoid them, getting by only with the
“end” symbols in the code sequence. However, the TG
coder does not store explicit “end” symbols. It maintains
more state information on the compression boundary than
Edgebreaker or Face Fixer that—together with explicit
offsets—makes “end” symbols implicit. But if we omit
the offsets we can find sequences with two valid decod-
ings even if we add explicit “end”s to the code sequence.

2 Connectivity coding with the TG Coder

To encode a triangulation, the TG coder [7] grows an
encoded region, maintaining one or more compression
boundaries into which it includes triangle after triangle.
It usually includes the triangle adjacent to thegate edge,
which advances in clockwise order around thefocus ver-
tex. However, it immediately includes any triangle that
shares two edges with the compression boundary.
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Figure 1: The smallest scenarios where an offset-less encoding
with “split” and “end” symbols is not unique occur in triangula-
tions of 11 vertices. The top right example, however, is unique.

The encoder starts with an compression boundary of
length two around an arbitrary edge, records the degree of
the two initial boundary vertices, and sets their slot count
to be one less than their degree. Whenever all boundary
vertices have a slot count of one or higher, the triangle
adjacent to the gate shares only one edge with the com-
pression boundary. Usually the third vertex of the trian-
gle at the gate is a previously unprocessed vertex, and
the encoder simply “adds” this vertex as a new bound-
ary vertex and records its degree. Occasionally, the third
vertex of this triangle is already on the boundary, and the
encoder splits the compression boundary into two loops,
temporarily stores one on a stack, and continues encoding
on the other. Here the encoder records a split symbol and
offset, which is the number of slots that are on the bound-
ary part that is stored on the stack, from which it can de-
rive how many slots are clockwise along the boundary
between the gate and the split vertex.

In the full paper we consider four offset-less encod-
ings, each with less information about the split operations
that occur during the encoding process. The strongest is
if we omit the offset, but still record “end” symbols that
mark the completion of a boundary loop. Figure 1 illus-
trates the smallest examples for which this encoding is
non-unique: in triangulations with 11 vertices there are



two possible ways of splitting the boundary of length 6
that has its 16 slots distributed in this particular configura-
tion and where both resulting boundary parts still enclose
two unprocessed vertices of degree 3 and 4. However,
there are not always two valid decodings in this scenario.
Sometimes the focus is already connected to other ver-
tices of the boundary through previously decoded trian-
gles. This places additional constraints on the possibili-
ties for splitting the boundary. The top-right triangulation
from Figure 1, for example, has only one valid decoding.

Theorem. For the TG coder without split offsets, but with
end symbols, there exist two different triangulations that
have the same offset-less encoding.

3 Searching for valid decodings

In order to find all valid decodings of an offset-less en-
coding we search through all possibilities of performing
split operations. For each attempt it recursively starts to
decode the first boundary part and in case this is success-
ful does the same for the second. Only if both recursions
are successful it returns a success, otherwise it tries out
the next possibility or returns a failure if there are none
left. A few observations help us to immediately eliminate
some splits from further consideration.

Initial experiments seemed to indicate that the split off-
sets of the TG coder might in fact be replaced by “end”s.
On our standard set of example meshes the search for
split offsets would find the correct answer every run we
tried. Table 1 shows that non-unique encoding are sur-
prisingly rare. The full paper has further experiments
showing that only a small fraction of random triangula-
tions have non-unique encodings.

4 Closing discussion

There have been attempts to establish a guaranteed bound
on the coding costs of the TG coder. However, the infre-
quently occuring “split” symbols and their offsets made
this a difficult task. Our work shows that these split off-
sets are not completely redundant. There remains the
task of determining if any degree-based coder can avoid
offsets. Alliez and Desbrun [1] suggested an adaptive
traversal heuristic that lowered the number of split oper-
ations and the remaining number of “splits” seemed neg-
ligibly small. Therefore the authors restricted their worst
case analysis to the vertex degrees. But Gotsman [2] has
shown that the entropy analysis of Alliez and Desbrun in-
cludes many degree distribution that do not correspond to
actual triangulations, and that there are fewer valid per-
mutations of degrees than triangulations and that addi-
tional information is necessary to distinguish between.
So split information does contribute a small but neces-
sary fraction to the encoding.

meshes splits non-unique
name vertices encodings min max avg encodings

cow 2,904 17,412 13 22 16.8 0
fandisk 6,475 38,838 0 12 3.3 0
horse 48,485 290,898 7 29 15.4 9
dinosaur 56,194 337,152 27 56 40.4 10
rabbit 67,039 402,222 0 27 9.0 56
armadillo 172,974 1,037,832 36 76 55.2 146

Table 1: We show several meshes with their histograms of
splits. The table lists numbers of vertices and encodings, split
statistics, and number of non-unique encodings for each mesh.
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