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1 Introduction

We analyze a variant of the implicit moving least squares
(MLS) algorithm proposed by Shen, O’Brien, and
Shewchuk [4]. We show that under certain sampling
conditions the surface reconstructed by the MLS algorithm
is geometrically and topologically correct.

The input to the MLS algorithm is a set of sample points
S near a surface F , with approximate normals. For each
sample s ∈ S we define a linear point function that
approximates the signed distance function of F in the local
neighborhood of s. These functions are blended together
using Gaussian weight functions yielding a smooth function
I whose zero set U is the reconstructed surface. We prove
that I is a good approximation to the signed distance function
of the sampled surface F , and that U is homeomorphic to F
and geometrically close to F .

Shen, O’Brien, and Shewchuk originally proposed their
MLS construction with different weight functions for build-
ing manifold surfaces from polygon soup. Kolluri [3]
showed that for reconstructing surfaces from points sets, a
variant of this algorithm is geometrically and topologically
correct under uniform sampling conditions. In this work we
extend the analysis to handle adaptively sampled point data
in which the sampling density is proportional to the local
surface complexity. Our sampling requirements defined
in Section 2, are similar to the sampling requirements of
Delaunay-based algorithms like Crust [1].

2 Sampling Requirements

The local feature size (lfs) at a point p ∈ F is the distance
from p to the nearest point of the medial axis of F , as shown
in Figure 1. S is an ε-sample of the surface F if the distance
from any point p ∈ F to its closest sample in S is less than
ε lfs(p). Our results are valid for values of ε ≤ 0.01.

Amenta and Bern [1] show that the function lfs is 1-
Lipschitz. We extend the definition of the function lfs
beyond the points on the surface F . This extension is
used in defining our sampling requirements and our MLS
construction. We define the extended local feature size of a
point p as

elfs(x) = min
p∈F

{lfs(p) + d(x, p) − |φ(x)|}.

Here, φ(x) is the signed distance from x to the surface F and
d(x, p) is the distance between point x and point p. It is easy
to show that the function elfs is 1-Lipschitz and reduces to
the function lfs for points on the surface.

Observation 1 For any two points, p and q, |elfs(p) −
elfs(q)| ≤ d(p, q). For any point p ∈ F , elfs(p) = lfs(p).

Figure 1: A closed curve along with its medial axis. The
local feature size of p is the distance to the closest point x on
the medial axis.

Our sampling requirements allow for noisy data when the
amount of noise in the sample coordinates is small compared
to the sample spacing. We assume that for each sample
s, the distance to its closest surface point p ∈ F is less
than ε2elfs(s). We also allow a small amount of noise in
the estimated sample normal. Consider a sample r with
estimated normal ~nr, as shown in Figure 1, whose closest
point in F is q with true normal ~nq. The angle between ~nr

and ~nq should be less than ε.
Our MLS construction builds the function I by blending

together functions associated with each sample point. Hence
arbitrary oversampling in one region of the surface can
distort the value of the function in other regions. To prohibit
such oversampling, we require that local changes in the
sampling density be bounded. Let α be the number of
samples inside a ball of radius ε elfs(p) centered at a point
p. If α > 0, the number of samples inside a ball of radius
2ε elfs(p) at p is at most 8α.

3 Surface Definition

The input to the MLS algorithm is a set of sample points
S near the surface F . Each sample s ∈ S has an associated
vector ~ns that approximates the outside normal of the surface
near s.

We build a point function for each sample s ∈ S that
approximates the signed distance function of F near s. The
point function Ps(x) of sample point s with normal ~ns is the
signed distance from x to the tangent plane at s, Ps(x) =
(x− s) ·~ns. A weighted average of the point functions gives
the function I whose zero set is the implicit surface we seek.

I(x) =

∑
s∈S Ws(x)((x − s) · ~ns)

∑
s∈S Ws(x)

.

The weight functions are Gaussian functions modified by a
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Figure 2: (a)The function I at point x is mostly determined
by the point functions of the samples inside the thin shell
bounded by B1 and B2. (b) The offset curves Fin and Fout

of a curve F .

normalization factor associated with each sample point.

Ws(x) = e−‖x−si‖
2/elfs2(x)/As.

The normalization factor associated with each sample point s
accounts for oversampling near s. Let α > 0 be the number
of samples inside a ball Bε of radius ε elfs(s) centered at
sample s, including s itself. The value of As is given by

As =
α

ε3elfs3(s)
.

4 Results

Consider a point x whose closest point on the surface is
p as shown in Figure 2(a). Let B1(x) be a ball of radius
|φ(x)| centered at x. Consider a second ball B2(x), that is
slightly bigger than B1(x), also centered at x. The radius
of B2(x) is |φ(x)| + τ elfs(x). Here τ = 2ε is a constant
that depends on the sampling density. Our results are based
on the observation that the value of the function at point x
is mostly determined by the samples inside the thin shell
bounded by B1(x) and B2(x).

Let Fout be the τ -offset surface outside of F that is
obtained by moving each point p ∈ F along the normal
at p by a distance τ · elfs(p). Similarly, let Fin be the τ -
offset surface inside of F as shown in Figure 2(b). The τ -
neighborhood is the region bounded by the inside and the
outside offset surfaces. Our first geometric result is that the
zero set U of I is inside the τ -neighborhood of F .

Theorem 2 For each point x outside Fout, I(x) > 0 and for
each point y inside Fin, I(y) < 0.

Theorem 2 proves that the function I does not have any
spurious zero crossings far away from the sample points. Our
second geometric result is about the gradient of I at points
in the zero set of I .

Theorem 3 Let x be a point in the τ -neighborhood of F and
let p be the point on F closest to x. Let ~n be the normal of p.
Then, ~n · ∇I(x) > 0.

Theorem 3 proves that the gradient can never be zero inside
the τ -neighborhood. From Theorem 2, the zero set of I is

Figure 3: MLS reconstruction of the Stanford Dragon model
from raw data.

inside the τ -neighborhood of F . Hence, from the implicit
function theorem [2], zero is a regular value of I and the
zero set U is a compact, two-dimensional manifold.

We use these geometric results to define a homeomor-
phism between F and U . As F and U are compact, a one-
to-one, onto, and continuous function from U to F defines a
homeomorphism.
Definition: Let Γ : IR3 → F map each point q ∈ IR3 to its
closest point on F .

Theorem 4 The restriction of Γ to U defines a homeomor-
phism from U to F .

5 Discussion

Our sampling requirement that ε ≤ 0.01 is probably an
artifact of our proof technique. The MLS algorithm works
quite well on data obtained from laser range, for which ε is
much larger than 0.01 as shown in Figure 3.

Our definition of the MLS surface requires knowledge of
the elfs(x), function which is unknown. In our analysis,
elfs can be replaced by any 1-Lipschitz function f such that
f(x) ≤ elfs(x) at all points x, and the input sample is an
εf -sample for ε ≤ 0.01. We can relax our requirements and
assume that the elfs function is known only at the sample
points. A 1-Lipschitz function function f(x) can now be
defined as

f(x) = min
s∈S

{d(x, s) + elfs(s) − d(x, nn(x))},

where nn(x) is the sample nearest x in S.
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