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Abstract

One of the open problems posed in [3] is: what is the
minimal number k such that an open, flexible k-chain
can interlock with a flexible 2-chain? In this paper,
we establish the assumption behind this problem, that
there is indeed some k that achieves interlocking. We
prove that a flexible 2-chain can interlock with a flexible,
open 16-chain.

1 Introduction

A polygonal chain (or just chain) is a linkage of rigid
bars (line segments, edges) connected at their endpoints
(joints, vertices), which forms a simple path (an open

chain) or a simple cycle (a closed chain). A folding of
a chain is any reconfiguration obtained by moving the
vertices so that the lengths of edges are preserved and
the edges do not intersect or pass through one another.
The vertices act as universal joints, so these are flexible

chains. If a collection of chains cannot be separated by
foldings, the chains are said to be interlocked.

Interlocking of polygonal chains was studied in [4, 3],
establishing a number of results regarding which col-
lection of chains can and cannot interlock. One of the
open problems posed in [3] asked for the minimal k such
that a flexible open k-chain can interlock with a flexible
2-chain. An unmentioned assumption behind this open
problem is that there is some k that achieves interlock-
ing. It is this question we address here, showing that
k = 16 suffices.

It was conjectured in [3] that the minimal k satisfies
6 ≤ k ≤ 11. This conjecture was based on a construc-
tion of an 11-chain that likely does interlock with a 2-
chain. We employ some ideas from this construction in
the example described here, but for a 16-chain. Our
main contribution is a proof that k = 16 suffices. It
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appears that using more bars makes it easier to obtain
a formal proof of interlockedness.1

Results from [3] include:

1. Two open 3-chains cannot interlock.

2. No collection of 2-chains can interlock.

3. A flexible open 3-chain can interlock with a flexible
open 4-chain.

This third result is crucial to the construction we
present, which establishes our main theorem, that a 2-
chain can interlock a 16-chain (Theorem 1 below.)

2 Idea of Proof

We first sketch the main idea of the proof. If we could
build a rigid trapezoid with small rings at its four ver-
tices (T1, T2, T3, T4), this could interlock with a 2-chain,
as illustrated in Figure 1(a). For then pulling vertex v
of the 2-chain away from the trapezoid would necessar-
ily diminish the half apex angle α, and pushing v down
toward the trapezoid would increase α. But the only
slack provided for α is that determined by the diameter
of the rings. We make as our subgoal, then, building
such a trapezoid.
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Figure 1: (a) A rigid trapezoid with rings would inter-
lock with a 2-chain; (b) An open chain that simulates a
rigid trapezoid; (b) Fixing a crossing of aa′ with bb′.

We can construct a trapezoid with four links, and
rigidify it with two crossing diagonal links. In fact, only

1See http://arxiv.org/abs/cs.CG/0410052 for the full paper.
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one diagonal is necessary to rigidify a trapezoid in the
plane, but clearly a single diagonal leaves the freedom
to fold along that diagonal in 3D. This freedom will be
removed by the interlocked 2-chain, however, so a single
diagonal suffices. To create this rigidified trapezoid with
a single open chain, we need to employ 5 links, as shown
in Figure 1(b). But this will only be rigid if the links
that meet at the two vertices incident to the diagonal
are truly “pinned” there. In general we want to take one
subchain aa′ and pin its crossing with another subchain
bb′ to some small region of space. See Figure 1(c) for
the idea.

This pinning can be achieved by the “3/4-tangle” in-
terlocking from [3], result (3) above; see Figure 2.
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Figure 2: Fig. 6 from [3].

So the idea is replace the two critical crossings with
a small copy of this configuration. This can be accom-
plished with 7 links per 3/4-tangle, but sharing with the
incident incoming and outgoing trapezoid links poten-
tially reduces the number of links needed per tangle. We
have achieved 5 links at one tangle and 4 at the other.
The other two vertices of the trapezoid need to simulate
the rings in Figure 1(a), and this can be accomplished
with one extra link per vertex. Together with the 5
links for the main trapezoid skeleton, we employ a total
of 5 + (5 + 4 + 1 + 1) = 16 links.

The final construction, shown in Figure 3, establishes
our main result:

Theorem 1 The 2-link chain is interlocked with the 16-

link trapezoid chain.

3 Discussion

We do not believe that k = 16 is minimal. We have
designed two different 11-chains both of which appear
to interlock with a 2-chain. However, both are based
on a triangular skeleton rather than on a trapezoidal
skeleton, and place the apex v of the 2-chain close to
the 11-chain. It seems it will require a different proof
technique to establish interlocking, for the simplicity of
the proof presented here relies on the vertices of the
2-chain remaining far from the entangling chain.

Another direction to explore is closed chains, for
which it is reasonable to expect fewer links. Replac-
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Figure 3: An open 16-chain forming a nearly rigid trape-
zoid, interlocked with a 2-chain (red).

ing the 3/4-tangles with “knitting needles” configura-
tions [2][1] produces a closed chain that appears inter-
locked, but we have not determined the minimum num-
ber of links that can achieve this.
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