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1 Introduction

In computer graphics, a common way of represent-
ing objects is with their triangulations. The perfor-
mance of operations executed on these objects depends
highly on how their surfaces are triangulated and how
these triangles are transmitted to the processing engine.
Thus, to speed up many operations, such as rendering
or compression [9, 10], it is desirable that triangles be
arranged such that their adjacency information is pre-
served.

In this paper we present a sparse vertex-adjacency
dual of a polygon triangulation, which is a graph that
preserves the vertex-adjacency information of the tri-
angles and contains a Hamiltonian cycle. The size of
this graph is linear in the number of polygonal vertices.

Effort has been made to design algorithms that pro-
duce Hamiltonian triangulations, where the dual graph
of the triangulation is a path. In [1], Arkin et al. show
that any set of n points has a Hamiltonian triangula-
tion and describe two algorithms which construct such
triangulations. They also show that the problem of de-
termining whether a polygon (with holes) has a Hamil-
tonian triangulation is NP-complete. In the same paper,
a sequential triangulation of a set of pointsis defined to
be a Hamiltonian triangulation whose dual graph con-
tains a Hamiltonian path, and it is proved that such
triangulations do not always exist for any given set of
points.

Hamiltonian properties of general triangulations
have been studied extensively. Various results that con-
struct a Hamiltonian cycle in a given triangulation can
be classified based on the model considered. In one
model, the given triangulation is allowed to be modi-
fied by adding new vertices or Seiner points. In [7],
Gopi and Eppstein present an algorithm for construct-
ing a Hamiltonian cycle in a given triangulation by in-
serting new vertices within existing triangles.

In the second model, the input triangulation cannot

be modified. In this case, the problem is that of arrang-
ing adjacent triangles in some order such that the result-
ing graph contains a Hamiltonian cycle. An important
property here is how adjacency is defined. In the dual
graph of a triangulation, adjacency is defined as edge-
adjacency where two triangles are adjacent when they
share an edge. Unfortunately, it is not always possible
to find Hamiltonian cycles in the dual graph.

Hamiltonian cycles in triangulations are studied
when adjacency is defined as vertex-adjacency, where
two triangles are considered to be adjacent if they share
at least one vertex. In [5], a triangulation is repre-
sented with a vertex-facet incidence graph which has
a vertex f for each facet (triangle), a vertex v for
each triangle-vertex and an edge (v, f) whenever v is
a vertex of triangle f. A facet cycle is defined by
a walk (vo, f1,v1, f2,v2,. .., f&, vk, fo,v0) wWhere no
arc is repeated and that includes each facet vertex ex-
actly once, but may repeat triangle-vertices. The au-
thors prove that any triangulation has a facet cycle if
it is not a checkered polygonal triangulation - that is if
it does not have a 2-coloring of the triangles such that
every white triangle is adjacent to three black ones.

A similar result under the same facet cycle model
is found in [2]. Here, Bartholdi 11l and Goldsman re-
fer to general triangulation as Triangulated Irregular
Networks (TINs). The authors describe an algorithm to
construct a cycle in a 2-adjacent TIN (a triangulation
in which each triangle shares an edge with at least two
other triangles). Their algorithm runs in O(n?) time in
the worst case.

In [4], Chen, Grigni and Papadimitriou define the
map graph of a planar subdivision P (or a map) to be a
graph G where the vertices of G correspond to the faces
of P and two vertices u and v are adjacent if their corre-
sponding faces in P share any point on their boundary.
This characterization is equivalent to the dual graph of
a triangulation in which two vertices v and v of the
dual are connected by an edge whenever the triangles



corresponding to « and v share a triangular edge or a
triangular vertex. Chen et al. study sparsity and color-
ing of map graphs.

Bartholdi I1l and Goldsman [3] introduce the same
concept of a map graph that they call the vertex-
adjacency dual of a general triangulation. The authors
show that the vertex-adjacency dual contains a Hamil-
tonian cycle, and they describe a linear time algorithm
to construct such a cycle. Here we note that the model
described in [3] is a variation of the facet-cycle model
described in [5]: In the facet cycle model a continuous
walk enters every triangle from a vertex v and leaves
from a different vertex «. In the vertex-adjacency dual
model, « and v are allowed to be the same vertex. The
vertex-adjacency dual described in [3] can have O(n?)
edges in the worst case. Here we consider linear size
subgraphs of the vertex-adjacency dual that still contain
Hamiltonian cycles, and that may be computed in lin-
ear time. We call such graphs sparse vertex-adjacency
duals.

2 Constructing a Sparse Vertex-
Adjacency Dual

Here we illustrate an approach with the simple case of
sequential triangulations [6].

Let P be a simple polygon with n vertices and let T»
be a sequential triangulation of P. We will refer to the
vertices of P as polygonal vertices and to the vertices
of the dual graph D of T'p as dual vertices.

To construct the sparse vertex-adjacency dual of
Tp, first construct its dual graph D, which in this
case is a path. Then, for every polygonal vertex
vp, If vp is shared by & > 2 consecutive triangles
ty,to,...,tg, insert an edge between the first and
last triangles ¢; and tx. The resulting graph G is a
sparse vertex-adjacency dual. To show that it contains
a Hamiltonian cycle, consider the following. In the
dual graph D of Tp every consecutive vertices u, v
and w are vertex-adjacent. Thus, connecting every « to
w in the sparse vertex-adjacency dual is equivalent to
connecting the vertices which are at distance 2 apart.
The resulting graph is known as the square of D. In
[8], it is shown that if removing the leaves of a tree T
produces a path, then the square of 7" is Hamiltonian.
In our case, our tree is the dual graph D, which will
still be a path if we remove its leaves. Thus, from the
results in [8] we can conclude that our construction for
a sequential triangulation yields a Hamiltonian cycle
(figure 1).

Figure 1. The sparse vertex-dual of a sequential tri-
angulation is equivalent to the square D? of the dual
graph D.

We can show that for any serpentine triangulation,
the above construction will produce a graph that con-
tains a Hamiltonian cycle. For general polygonal tri-
angulations however, this construction needs a slight
modification in order to contain such a cycle while pre-
serving adjacency information of the triangles.
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