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Given a planar set S of arbitrary topology and a radius r, we define an r-tightening of S,
which is a set that has a radius of curvature everywhere greater than or equal to r and that
only differs from S in a morphologically-defined tolerance zone. This zone, which we
call the mortar, contains only the details of S, such as high curvature portions of its
boundary, thin gaps and constrictions, and small holes and connected components. We
describe how to approximately compute r-tightenings for shapes represented as binary
images using constrained, level set curvature flow.

Our work addresses a formulation of the shape smoothing problem different from
those given in most prior art. The energy minimization-based fairing methods in the
CAD/CAM literature (such as [3]) and the various polygon mesh smoothing techniques
in the graphics literature (such as [2]) typically do not guarantee a bound on curvature or
confine shape changes to a tolerance zone like the mortar.

The mortar, which we introduced in [7], is defined in terms of the morphological
operations of rounding and filleting, which are described in detail in [4]. S rounded by r,
denoted Rr(S), is the union of disks of radius r  contained in S, while S filleted by r,
denoted Fr(S), is the complement of the union of disks contained in the complement of S.
The mortar is Fr(S)-Rr(S). It is empty away from thin and high-curvature regions of S,
and around those regions it is a subset of all points within a distance r of the boundary of
S.

We define a simple closed curve C lying in a set T as tight with respect to T if it
locally minimizes length, so that there exists a ε such that for all t  and all δ ≤ ε,
d(C(t),C(t+δ)) = δ, where d(A,B) is the length of the shortest path connecting A and B in
T and C is parameterized by arclength. We define a point on the boundary of a shape as
concave if the line segment connecting the intersections of a small circle centered on the
point with the boundary lies completely outside the shape. Tight loops through a set
consist of concave portions of its boundary connected by tangent line segments. Because
concave portions of the boundary of the mortar have a radius of curvature greater than or
equal to r, if we define an r-tightening of S as a set T, Rr(S) ⊆ T ⊆ Fr(S), such that the
bounding loops of T are tight with respect to the mortar of S, it follows that the boundary
of an r-tightening also has a radius of curvature greater than or equal to r.

When Rr(S) and the complement of Fr(S) each consist of a single connected
component, the tightening is unique, and its boundary is the shortest loop around Rr(S)
lying in Fr(S). In this case the tightening corresponds to the relative convex hull or
minimum perimeter polygon [6] of Rr(S) in Fr(S). When Rr(S) and Fr(S) have more
complex topologies, there may be several different tightenings, each of which may have
holes and multiple connected components

We conjecture that for shapes of arbitrary topology represented as binary images,
level-set curvature flow [5] constrained to the mortar always converges to a tightening,
which includes as a corollary that a tightening always exists. In our implementation of
curvature flow, we initialize the level set function Φ to be the signed Euclidean distance
to the boundary of the core of the input shape, approximately computed using



Danielsson’s vector propagation algorithm [1], which we also use for implementing the
morphological operations. At each iteration, we compute Φt = -F |∇Φ|, where F is the
velocity of the level set, which is equal to the curvature in the mortar and zero outside the
mortar. The curvature is given by
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differences. We then compute Φ (t+∆t, x, y) = Φ (t, x, y) + ∆t • Φt(t, x, y), where ∆t is
inversely proportional to the maximum value of F at time t, so that the level set crosses at
most one pixel each iteration. During most iterations, we only update Φ in a narrow band
of pixels around the zero level set.

Curvature flow converges slowly where the radius of curvature spans several pixels.
We therefore downsample the image representation of the core by a factor of two until r
corresponds to 1-2 pixels. We perform the flow at this coarse resolution, then iteratively
upsample by a factor of two and re-perform the flow. We find we need less than 100
iterations at each level of resolution. We anticipate adapting this technique to generate
three-dimensional results using mean curvature flow.
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