
NEARPT3 — Nearest Point Query in E3 with a Uniform Grid

[Extended Abstract]

W. Randolph Franklin
ECSE Dept, 6026 JEC, RPI, Troy NY 12180

geom@wrfranklin.org, http://wrfranklin.org

1. INTRODUCTION
We present Nearpt3, an algorithm and preliminary imple-
mentation to preprocess a large set of fixed points and then
perform nearest point queries against them. With fixed and
query points drawn from the same distribution, Nearpt3’s
expected preprocessing and query time are Θ(N), with a
very small constant factor. Nearpt3, designed for large
datasets, has been tested on the largest datasets in the Geor-
gia Tech Large Geometric Models Archive, [7]. Therefore,
processing tens of millions of points is quite feasible.

The prior art includes various data structures and algo-
rithms for variants of nearest neighbor searching. The cost
of a Voronoi diagram, [6], in E3 is data dependent, amd
runs from Ω(N log N) to O(N2) in time and space for pre-
processing, with each query costing θ(log N). Range trees,
[6], cost θ(N log N) time to preprocess, with each query also
costing θ(log N). ANN (Approximate Nearest Neighbors),
[2], is a C++ library for approximate and exact nearest
neighbor searching in Ed, allowing a variety of metrics, im-
plemented with several different data structures, based on
kd-trees and box-decomposition trees. All these algorithms
and data structures are more general, hence bigger, than
Nearpt3, which is optimized specifically for the L2 metric
in E3, although its ideas would generalize.

Nearpt3 appears to be the only method that enthusias-
tically rejects hierarchical data structures and search tech-
niques. Trees and subdivision searching are more robust
against adversarially chosen input. However, we believe,
based on tests on real data, that they are often suboptimal in
practice. This is true even when the real data is moderately
unevenly distributed. The extreme data unevenness that
would destroy Nearpt3’s performance would also force hi-
erarchical data structures to have many levels. In that case,
where the hierarchies would then be faster than Nearpt3,
though not fast, a shallow hierarchy would perhaps be the
least slow.

Nearpt3 has three stages, as follows. The data structure is
a uniform grid, [1, 4].

Prepreprocess: This step, which does not depend on the
data, need be performed only once. Hence it is ex-
cluded from the time statistics, just as the compilation
time is also excluded. Indeed, this prepreprocessing
could be forced into the C++ compilation step us-
ing the template specialization facilities, though that

would be silly.

1. Generate the coordinates (x, y, z) of all grid cells
with 0 ≤ x ≤ y ≤ z ≤ R for some fixed R.

2. Sort them by
p

x2 + y2 + z2.

3. Pass down the list in order. For each cell c1, find
the last cell, c2, whose closest point to the origin
is at least as close as the farthest point of c1. Call
c2 the stop cell.

Since the stop cells are monotonically increasing,
all this requires only one pass down the cell list.

The point is that if a point has been found in c1,
we have to continue searching through c2 to be
sure of finding any closer points.

4. Write the sorted list of cells and stop cells to a
file.

Preprocess: Here the fixed points are built into the data
structure.

1. Compute a uniform grid resolution, G from the
number of fixed points, Nf or get it from the user.
A reasonable value is G = r 3

p
Nf , for 1/2 ≤ r ≤

2.

2. Allocate a uniform grid with one word per cell, to
store a count of the number of points in each cell.

3. Read the fixed points, determine which cell of the
uniform grid each would fall in, and update the
counts.

4. Allocate a ragged array for the uniform grid, with
just enough space in each cell for the points in
that cell.

A ragged array contains storage for the points
plus a dope vector pointing to the first point of
each cell. The total variable storage is one word
per cell, plus the storage for the points.

5. Process the fixed points again, computing for a
second time the cell that each falls into. This
time, store each point in its proper cell.

The goal is to minimize both the storage used
and the number of storage reallocations. Storage
reallocations become especially costly as the pro-
gram’s memory working set approaches the com-
puter’s available real memory.

A possible alternative would be to use a linked
list for the points in each cell. However, the space

used for the pointers would be significant, and the
points in each cell would be scattered throughout
the memory, which might reduce the cache per-
formance.

Another alternative would be to use a C++ STL
vector, which reallocates its storage as it grows.
Our experience finds this to be very suboptimal.

Query: This reports the closest fixed point to a query
point.

1. Determine which cell, c, contains the query point.

2. Using the sorted cell list computed in the prepre-
processing step, spiral out from c until a cell with
at least one point is found. Often this is c itself.

For each cell with coordinates (x, y, z) in the
sorted cell list, up to 47 other reflected and ro-
tated cells are derived, such as (−x, z, y). If any
ordinate is zero, or any two are equal, there will
be fewer other cells.

It would be possible to do this reflection, rota-
tion, and duplicate deletion in the prepreprocess-
ing stage. This would cause a much larger sort
cell list. However it would reduce the query time
because that code would have fewer conditionals,
which should make it more optimizable.

3. Continue spiralling out until c’s stop cell to find
any closer points, if one exists.

This spiralling process is conservative since it ig-
nores the location of the query point inside c.

On the average 200 cells are searched for each
query, but checking each cell is very fast.

2. TESTS
Nearpt3’s performance is data dependent. An improper
choice of input, such as query points that are very far from
all the fixed points, will be intolerably slow. Nevertheless,
all the data sets tested so far perform quite well, including
these:

Data
set
name

Source
#

fixed
points

#
queries

CPU
time,
secs

Bunny GIT 17973 17974 1.9
Bone6 GIT 284818 284818 28
Dragon GIT 218882 218883 21
Hand GIT 163661 163662 16
Uniform
random

generated 1M 1M 128

The environment is a 2002-vintage IBM T30 Thinkpad lap-
top computer with 768 MB of memory, a 1600 MHz Pentium
4 Mobile CPU, and Intel’s icpc 8.1 C++ compiler, with all
optimizations enabled. The times include reading the data
and writing the results. These experiments also validate
that the cost is linear. The preprocessing cost is Θ(N).
Each query may cost O(N), but typically costs Θ(1).

Nearpt3’s cost is affected by the grid resolution, however
values within a factor of two of the optimum typically change
the time less than a factor of 2.

3. EXTENSIONS
Nearpt3 could return approximate nearest matches in
much less time since the spiral search could stop sooner.
In Ed for other d, the cost of searching is exponential in d,
as for any search procedure.

Nearpt2 is a simplified version for preprocessing and
searching for points in E2. We tested 1M queries against
1M fixed points, both sets randomly generated, using
Nearpt2, CGAL 3.0.1’s Nearest neighbor searching,
[3], and ANN 0.2, [5]. A proper choice of compiler flags
would probably speed both CGAL and ANN, but not re-
duce their storage cost. None of these tests required any
data I/O since the input was randomly generated and the
output not written. Performing 1M queries against 1M fixed
points cost as follows.

Program Time Storage
Nearpt2 9.4 46MB
CGAL NNS 41 120MB
ANN 41 128MB

We then tried 10M fixed and 10M query points but CGAL
and ANN required too much memory. Nearpt2 used
458MB and 98 seconds.

4. SUMMARY
The general lesson of Nearpt3 is that simple data struc-
tures like the uniform grid can be quite efficient in both time
and space in E3.

5. ACKNOWLEGEMENTS
This research was supported by NSF grant CCR-0306502.

6. REFERENCES
[1] Akman, V., W. R. Franklin, M. Kankanhalli, and

C. Narayanaswami. Geometric computing and the
uniform grid data technique. Computer Aided Design
21(7), (1989), 410–420.

[2] Arya, S. and D. M. Mount. Approximate nearest
neighbor queries in fixed dimensions. In Proc. 4th
ACM-SIAM Sympos. Discrete Algorithms. 271–280.

[3] CGAL. The CGAL home page.
http://www.cgal.org/, 2003.

[4] Franklin, W. R. and M. Kankanhalli. Parallel
object-space hidden surface removal. In Proceedings of
SIGGRAPH’90, volume 24. 87–94.

[5] Mount, D. and S. Arya. ANN: library for approximate
nearest neighbor searching version 0.2 (beta release).
http://www.cs.umd.edu/~mount/ANN/, 1998.

[6] Preparata, F. P. and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[7] Turk, G. and B. Mullins. Large geometric models
archive, 2003. URL
http://www.cc.gatech.edu/projects/large_models/.

