Hinged Dissection of Polypolyhedra in the hinged dissection is linear inand the combinato-

Erik D. Demainé Martin L. Demainé rial complgxity qu. For polyplatonics., we give partic-
_ _ ) ularly efficient hinged dissections, tuning the number of
Jeffrey F. Lindy Diane L. Souvaine pieces to the minimum possible among a natural class of

“regular” hinged dissections of polypolyhedra. For poly-
1 Introduction. A dissectionof two figures (solid parallelepipeds (wher® is any fixed parallelepiped), we

2D or 3D shapes, e.g., polygons or polyhedra) is a wgive hinged dissections in which every piece is a scaled
to cut the first figure into finitely many (compact) piecesopy of P. All of our hinged dissections are hinged along
and to rigidly move those pieces to form the second figelges and form a cyclic chain of pieces, which can be bro-
ure. It is well-known that any two polygons of the samieen into a linear chain of pieces.
area have a dissection, but not every two polyhedra of theDur results generalize analogous results about hinged
same volume have a dissection([3, 5 dissections of “polyforms” in 20{]4].

A hinged dissectionof Like most previous theoretical work in hinged dissec-
two figures is a dissectionin tions, we do not know whether our hinged dissections can
which the pieces are hinge be folded from one configuration to another without self-
together at points (in 2D intersection. However, we prove the existence of such mo-
or 3D) or along edges (in tions for the most complicated gadget, the twister.
3D), and there is a mo- 3 Proof Overview. Our construction of a hinged dis-
tion between the two figures section of allu-polyhedra of typeP divides into two parts.

that adheres to the hinging,Figure 1 Hinged dissec- First, we find a suitable hinged dissection of the base poly-

keeping the hinge connec-, ==~ square and equilat-hedronP. The exact constraints on this dissection vary,

tlon_s between_ pleces_mtac:céral triangle, described by Du-but two necessary properties are that the hinged dissec-
While a few hinged dissec- yo 0y i) tion must be (1) cyclic, forming a closed chain of pieces,
tions such as_the one in Fig- ) . ) and (2)exposedn the sense that, for every face®fthere
““:‘B are quite Ol,d (1902,)’ hinged dissections have i€a hinge inH that lies on the face (either interior to the
ceived _most of their study in the last few years; see|[6, 41 or on its boundary). For platonic solids, these hinges
It remains open whether every two polygons of the sagg) he edges of the polyhedron: in the general case, we
area have a hinged dissection, or whether every two palys e these hinges along faces’ lines of reflectional sym-

hedra that have a dissection also have a hinged dissectri]qgtry_ Second, we repeatcopies of this hinged dissec-

2 Results. In this pa- vy tion of P, spliced together into one long closed chain. Fi-
perwe develpp abrogd fam- - 4 ; nally, we prove that this new hinged dissection can fold
ily of 3D hinged dissec-| 2 7 "1} [ ] ] into all n-polyhedra of typeP, by induction on.
Eggfafg;l:dclzlss c?|f h%ﬂyr/é ] = 3.1 Platonic Solids. Figure [3 shows an exposed

polypoly : I cyclic hinged dissection of each of the platonic solids.

For a polyhedronP with -
labeled faces, golypoly-
hedron of typeP is an
interior-connected non-self-

Basically, each piece comes from carving khsided pla-

Figure 2: Two polycubes of tonic solid intok face-based pyramids with the platonic

order 8, which have a24- solid’s centroid as the apex. As drawn, these hinged dis-

: : . piece edge-hinged dissectiorsections consist of pieces, but by merging consecutive

intersecting solid formed by | . . .

C - .~7 by our results. pairs of pieces along their common face, the number of

joining several rigid copies . . : o

. : .. _pieces can be reducedi@2 pieces while maintaining ex-

of P wholly along identically labeled faces. (Such join: . . . X

. . . ! osed hinges. These exposed hinged dissections have the

ings are possible only for reflectionally symmetric faces, : . . .
west possible pieces, subject to the exposure constraint,

Figure[2 shows twq»olycubes(whe_re_P 'Sa cube). because a hinge can simultaneously satisfy at most two
For every polyhedro® and positive integen, we de- 2
faces of the original polyhedron.

velop one hinged dissection that folds into all (exponen—3 2 G C n th | 3D
tially many)n-polyhedra of type”. The number of pieces - eneral Lase. in t_ € general case, we Use a
generalization of the straight skeletan [1] to decompose
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Given ann-polyhedron(@ of type P, one copyP; of P

can be removed to produce én— 1)-polyhedron®’. By
induction, the(n — 1)st repetition of the exposed hinged
dissection can fold int@)’. Also, P, itself can be decom-
posed into an instance of the exposed hinged dissection.
Our goal is to merge these two hinged dissections. Essen-
tially, we show that the hinged dissections can be placed
against the shared face betwe@nand(@’ in such a way
that (1) a hinge of the exposed hinged dissectiorPpf
coincides with a hinge of the hinged dissectiot¥f and

Figure 3: Unfolded exposed cyclic hinged dissections of thgez.) the four pieces involved in these two hinges can be re-

platonic solids. The bold lines indicate a pair of edges that J?B“ged SO that'all pieces are conng(?ted in a single cycle,

joined by a hinge but have been separated in this figure to perﬁ{ﬁd that F:ycle !S exactly theth repetition of the exposed

unfolding. The dashed lines denote all other hinges betwedRged dissection aP.

pieces. In the unfolding, the bases of all of the pyramid pieces3-4 Mutually Rotated Base Polyhedra: Twisters.

lie on a plane, and the apexes lie above that plane (closer tolfha face isk-fold symmetric fork > 3, then there are

viewer). several ways to glue two copies &f along this face.
These different gluings produce different polypolyhedra

face. First, we diyide; each reflectionally symmetric faqu itself is not%-foldg S}F/)mmetric. Howevgr, {)F;Iyyone

of P alonfg one of its lines O_f _symmetry, producing a pOIydf the gluings can be produced by the inductive argument

hedronP’.  Second, we divide each face 6f so that yoqcribed above, because only one relative rotation will

any spanr/nng tree Of, the align the hinges that lie along the one chosen line of sym-
faces in P’ translates into metry

a Hallmlltonlarr::ycci:le ")D/t,he To enable these kinds
resulting polyhedron P". of joinings, we embed the

;Zségﬂﬁgz?af tSriir;rTglrjlg) twister gadget shown in A.l/
k Figure[$ beneath each face P V
f-’;/

tion _result of [2] as well as of P that hask-fold sym-
a refinement for hinged dis- metry for k > 3. This

section of 2D polyformd [4, gadget consists af cycli-

Section 6. We concepty-Figure 4: Hamiltonian refine- - -
ally triang]ulate each facpﬁ ment of five faces in a hypo- Cally hinged pieces that a

i low any integer multiple of
of P’ using chords (thoughthet'cal polyhedron. y g p

we do not cut along the edges of that triangulation). Th o rotation of one set of

' eces with respect to the ;
for each triangle, we cut from an arbitrarily chosen intejjq, pieces P ness ghtey are prlsmsé. Tgeg
; - i - : gaps between pieces 8 an
rior point to the midpoints of the three edges. Figure 4 oferences. in subfigure (a) and between

z?opx\,’s ag ce;(r?mglli azorngng];?f:;nI?g“geeazféhlee:z ‘L O. Aichholzer, F. Auren- the top and bottom layers are
» W W u ( W ulen hammer, D. Alberts, and for visual clarity only; in fact,

tour) and produce a Hamiltonian cycle on the face£'6f B. Gartner. A novel the two layers are flush. Solid
In particular, we can start from the matching on the type of skeleton for poly- segments denote lengthwise

dodecahedron

Figure 5: This 32-piece
|_twister gadget allows turns of
one-quarter of a twist. Al-
though the pieces look two
dimensional, they have thick-

faces ofP’ from the reflectionally symmetric pairing, and
choose a spanning tree on the facesPdfthat contains
this matching. Then the resulting Hamiltonian cycle iW]
P crosses a subdivided edge of every line of symme-
try. (In fact, the Hamiltonian cycle crosses every subdi-

gons. J. Univ. Comput. hinges on the “inside” layer;
Sci, 1(12):752-761, 1995. gashed segments denote tiny

E. M. Arkin, M. Held, phinges on the perimeter.
J. S. B. Mitchell, and S. S.

Skiena. Hamiltonian triangulations for fast renderifithe
Visual Computerl2(9):429-444, 1996.

vided edge of every line of symmetry.) Thus, in the eX3] V. G. Boltianskii. Hilbert's Third Problem V. H. Winston

posed cyclic hinged dissection of the Hamiltonian poly-
hedronP”, there is an exposed hinge along every line é‘
symmetry. Therefore all joinings between copiesitf
can use these hinges.

3.3 Putting Pieces Together. We use induction to [5]
prove that theuth repetition of the exposed cyclic hinged
dissection of P described above can fold into amy [6]
polyhedron of typeP. The base case of = 1 is trivial.

& Sons, 1978.
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