
Hinged Dissection of Polypolyhedra
Erik D. Demaine∗ Martin L. Demaine∗

Jeffrey F. Lindy† Diane L. Souvaine‡

1 Introduction. A dissectionof two figures (solid
2D or 3D shapes, e.g., polygons or polyhedra) is a way
to cut the first figure into finitely many (compact) pieces
and to rigidly move those pieces to form the second fig-
ure. It is well-known that any two polygons of the same
area have a dissection, but not every two polyhedra of the
same volume have a dissection [3, 5].

Figure 1: Hinged dissec-
tion of square and equilat-
eral triangle, described by Du-
deney [5].

A hinged dissectionof
two figures is a dissection in
which the pieces are hinged
together at points (in 2D
or 3D) or along edges (in
3D), and there is a mo-
tion between the two figures
that adheres to the hinging,
keeping the hinge connec-
tions between pieces intact.
While a few hinged dissec-
tions such as the one in Fig-
ure 1 are quite old (1902), hinged dissections have re-
ceived most of their study in the last few years; see [6, 4].
It remains open whether every two polygons of the same
area have a hinged dissection, or whether every two poly-
hedra that have a dissection also have a hinged dissection.

Figure 2: Two polycubes of
order 8, which have a24-
piece edge-hinged dissection
by our results.

2 Results. In this pa-
per we develop a broad fam-
ily of 3D hinged dissec-
tions for a class of poly-
hedra called polypolyhedra.
For a polyhedronP with
labeled faces, apolypoly-
hedron of typeP is an
interior-connected non-self-
intersecting solid formed by
joining several rigid copies
of P wholly along identically labeled faces. (Such join-
ings are possible only for reflectionally symmetric faces.)
Figure 2 shows twopolycubes(whereP is a cube).

For every polyhedronP and positive integern, we de-
velop one hinged dissection that folds into all (exponen-
tially many)n-polyhedra of typeP . The number of pieces
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in the hinged dissection is linear inn and the combinato-
rial complexity ofP . For polyplatonics, we give partic-
ularly efficient hinged dissections, tuning the number of
pieces to the minimum possible among a natural class of
“regular” hinged dissections of polypolyhedra. For poly-
parallelepipeds (whereP is any fixed parallelepiped), we
give hinged dissections in which every piece is a scaled
copy ofP . All of our hinged dissections are hinged along
edges and form a cyclic chain of pieces, which can be bro-
ken into a linear chain of pieces.

Our results generalize analogous results about hinged
dissections of “polyforms” in 2D [4].

Like most previous theoretical work in hinged dissec-
tions, we do not know whether our hinged dissections can
be folded from one configuration to another without self-
intersection. However, we prove the existence of such mo-
tions for the most complicated gadget, the twister.

3 Proof Overview. Our construction of a hinged dis-
section of alln-polyhedra of typeP divides into two parts.
First, we find a suitable hinged dissection of the base poly-
hedronP . The exact constraints on this dissection vary,
but two necessary properties are that the hinged dissec-
tion must be (1) cyclic, forming a closed chain of pieces,
and (2)exposedin the sense that, for every face ofP , there
is a hinge inH that lies on the face (either interior to the
face or on its boundary). For platonic solids, these hinges
will be edges of the polyhedron; in the general case, we
place these hinges along faces’ lines of reflectional sym-
metry. Second, we repeatn copies of this hinged dissec-
tion of P , spliced together into one long closed chain. Fi-
nally, we prove that this new hinged dissection can fold
into all n-polyhedra of typeP , by induction onn.

3.1 Platonic Solids. Figure 3 shows an exposed
cyclic hinged dissection of each of the platonic solids.
Basically, each piece comes from carving thek-sided pla-
tonic solid intok face-based pyramids with the platonic
solid’s centroid as the apex. As drawn, these hinged dis-
sections consist ofk pieces, but by merging consecutive
pairs of pieces along their common face, the number of
pieces can be reduced tok/2 pieces while maintaining ex-
posed hinges. These exposed hinged dissections have the
fewest possible pieces, subject to the exposure constraint,
because a hinge can simultaneously satisfy at most two
faces of the original polyhedron.

3.2 General Case. In the general case, we use a 3D
generalization of the straight skeleton [1] to decompose
a given polyhedron into a collection of cells, exactly one
cell per facet, such that exactly one cell is incident to each
facet. These cells form the pieces in an exposed hinged
dissection. For these pieces can be connected together
into a cyclic hinged dissection, we need to first arrange
for the polyhedronP to have a Hamiltonian dual graph.

In fact, we make two main modifications toP ’s sur-
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Figure 3: Unfolded exposed cyclic hinged dissections of the
platonic solids. The bold lines indicate a pair of edges that are
joined by a hinge but have been separated in this figure to permit
unfolding. The dashed lines denote all other hinges between
pieces. In the unfolding, the bases of all of the pyramid pieces
lie on a plane, and the apexes lie above that plane (closer to the
viewer).

face. First, we divide each reflectionally symmetric face
of P along one of its lines of symmetry, producing a poly-
hedronP ′. Second, we divide each face ofP ′ so that

Figure 4: Hamiltonian refine-
ment of five faces in a hypo-
thetical polyhedron.

any spanning tree of the
faces inP ′ translates into
a Hamiltonian cycle in the
resulting polyhedronP ′′.
This reduction is similar to
the Hamiltonian triangula-
tion result of [2] as well as
a refinement for hinged dis-
section of 2D polyforms [4,
Section 6]. We conceptu-
ally triangulate each facef
of P ′ using chords (though
we do not cut along the edges of that triangulation). Then,
for each triangle, we cut from an arbitrarily chosen inte-
rior point to the midpoints of the three edges. Figure 4
shows an example. For any spanning tree of the faces
of P ′, we can walk around the tree (follow an Eulerian
tour) and produce a Hamiltonian cycle on the faces ofP ′′.

In particular, we can start from the matching on the
faces ofP ′ from the reflectionally symmetric pairing, and
choose a spanning tree on the faces ofP ′ that contains
this matching. Then the resulting Hamiltonian cycle in
P ′′ crosses a subdivided edge of every line of symme-
try. (In fact, the Hamiltonian cycle crosses every subdi-
vided edge of every line of symmetry.) Thus, in the ex-
posed cyclic hinged dissection of the Hamiltonian poly-
hedronP ′′, there is an exposed hinge along every line of
symmetry. Therefore all joinings between copies ofP ′′

can use these hinges.
3.3 Putting Pieces Together. We use induction to

prove that thenth repetition of the exposed cyclic hinged
dissection ofP described above can fold into anyn-
polyhedron of typeP . The base case ofn = 1 is trivial.

Given ann-polyhedronQ of type P , one copyP1 of P
can be removed to produce an(n−1)-polyhedronQ′. By
induction, the(n − 1)st repetition of the exposed hinged
dissection can fold intoQ′. Also,P1 itself can be decom-
posed into an instance of the exposed hinged dissection.
Our goal is to merge these two hinged dissections. Essen-
tially, we show that the hinged dissections can be placed
against the shared face betweenP1 andQ′ in such a way
that (1) a hinge of the exposed hinged dissection ofP1

coincides with a hinge of the hinged dissection ofQ′, and
(2) the four pieces involved in these two hinges can be re-
hinged so that all pieces are connected in a single cycle,
and that cycle is exactly thenth repetition of the exposed
hinged dissection ofP .

3.4 Mutually Rotated Base Polyhedra: Twisters.
If a face isk-fold symmetric fork ≥ 3, then there are
several ways to glue two copies ofP along this face.
These different gluings produce different polypolyhedra
if P itself is notk-fold symmetric. However, only one
of the gluings can be produced by the inductive argument
described above, because only one relative rotation will
align the hinges that lie along the one chosen line of sym-
metry.

5

67810
11

12
13

14
15 16 1 2

3
4

9

Figure 5: This 32-piece
twister gadget allows turns of
one-quarter of a twist. Al-
though the pieces look two
dimensional, they have thick-
ness (they are prisms). The
gaps between pieces 8 and 9
in subfigure (a) and between
the top and bottom layers are
for visual clarity only; in fact,
the two layers are flush. Solid
segments denote lengthwise
hinges on the “inside” layer;
dashed segments denote tiny
hinges on the perimeter.

To enable these kinds
of joinings, we embed the
twister gadget shown in
Figure 5 beneath each face
of P ′′ that hask-fold sym-
metry for k ≥ 3. This
gadget consists of8k cycli-
cally hinged pieces that al-
low any integer multiple of
1/k rotation of one set of
pieces with respect to the
other pieces.
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