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1 Introduction

Molecular configurations can be modeled as sets of
spheres in 3D. By imposing geometric constraints
on the spheres based on molecular biology one
can apply efficient techniques [3], for example, to
analyze the complexity of molecular surface [1].
Guibas et al. [2] introduced a model called neck-
lace that finds applications in computer graphics,
computer vision, robotics, geographic information
systems and molecular biology. They studied two
data structures, wrapped hierarchy and layered hier-
archy, for representing necklaces and for performing
collision tests.

Guibas et al. [2] proved that the wrapped hierar-
chy admits a separating family of size O(n2−2/d).
This is the first subquadratic bound proved for col-
lision detection using predefined hierarchies. Al-
though the layered hierarchy can be used for colli-
sion detection, “no subquadratic bound on the size
of a separating family based on the layered hierar-
chy is currently known” [2]. The main result of this
paper is that the same upper bound holds for the
layered hierarchy.

One of the advantages of layered hierarchy over
wrapped hierarchy is the “local” definition of the
cages. We propose a modification of the layered
hierarchy so that some deformations of a necklace
can be maintained efficiently. In particular, we show
that rigid-body conformational changes can be han-
dled in O(log n) time only.

2 Necklaces and Bounding-Volume Hierarchies

We define the notion of necklace in a slightly more
general form1.

Definition 1 (Necklace) A necklace is a se-
quence of beads N=〈B1, B2, . . . , Bn〉 in R

d space
that has the following properties:

1. The radius of each bead is in the interval
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the necklace have a point in common.

[ρmin, ρmax] where ρmin, ρmax are positive con-
stants.

2. The distance between the centers of two adja-
cent beads is bounded by a constant δ.

Collision detection problem arises in such appli-
cations as protein folding and protein docking. A
bounding volume hierarchy is a common approach
that models and detects collisions and self-collisions
of different geometrical shapes including necklaces.
This approach reduces computational time since it
suffices to test collisions among bounding volumes.

Definition 2 (Hierarchies) For a necklace N ,
let T (N ) denote the balanced binary tree defined re-
cursively so that, for an internal node v, its left
subtree contains bm/2c leaves where m is the num-
ber of leaves below v. Both wrapped and layered
hierarchies have a cage C(v) associated with a node
v of T (N ) and the cages of leaves correspond to
the beads, C(v) = Bi for i-th leaf v where i =
1, 2, . . . , n. For an internal node v, the cage is de-
fined differently for two hierarchies:

• Wrapped hierarchy. The cage C(v) is the
smallest enclosing ball of beads corresponding
to the leaves below v.

• Layered hierarchy. The cage C(v) is the small-
est enclosing ball of the cages corresponding to
the children of v.

The layered hierarchy has many advantages over
the wrapped counterpart. For a necklace size n, the
layered hierarchy can be constructed in linear time
since the cage of each node can be computed in O(1)
time. The wrapped hierarchy can be constructed
in O(n log n) time by using linear-time algorithm
[4] for computing the minimum enclosing sphere
MES. A simpler algorithm for computing MES in
expected O(n) time can be used. Note that the
algorithm for the layered hierarchy is even simpler.

3 Necklace Deformation with Layered Hierarchy

Modeling conformation changes is required in pro-
tein docking, robotics and computer graphics. One
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type of local deformation - rigid-body conforma-
tional change [5] - can be defined as follows.

Definition 3 (Conformational Change) Let
N = 〈B1, B2, . . . , Bn〉 be a necklace and let i be an
index from 1 to n− 1. Let M be a rigid motion in
R

3 (the composition of a translation and a rota-
tion). If N ′ = 〈B1, . . . , Bi,M(Bi+1), . . . ,M(Bn)〉
is a necklace then N ′ is a rigid-body conformational
change of N .

We show how to modify the layered hierarchy
so that a rigid-body conformational change can be
done efficiently. We store a rigid motion M(v) as-
sociated with a vertex v of T (N ). Each rigid mo-
tion M(v) is a composition of a 3D rotation R(v)
and a translation T (v). The rotation can be rep-
resented as a quaternion or a rotation matrix. We
assume that the inverse rigid motion M−1(v) can
be computed in O(1) time. We call the hierarchy
augmented with rigid motions as augmented layered
hierarchy.

The augmented layered hierarchy defines the po-
sition of a bead Bi in the space as follows. Let v1 =
vroot, v2, . . . , vk be the path from the root of the lay-
ered hierarchy to the vertex with the bead Bi and
let ci be the center of the bead stored in vk. Then
the real position of Bi is M1(M2(. . .Mk(ci) . . . ))
where Mj = M(vj), j = 1, . . . , k. Let I denote
the identity transformation, i.e. I(p) = p for any
p ∈ R3.

Theorem 1 The augmented layered hierarchy can
be maintained in O(log n) time if a rigid-body con-
formational change is applied.

4 Cages of Layered Hierarchy

Although the layered hierarchy can support rigid-
body conformational changes efficiently (if aug-
mented as in previous section), the wrapped hierar-
chy occupies smaller space since its cages are always
no larger that the corresponding cages of the layered
hierarchy. Despite this evidence we show that the
cages of the layered hierarchy have the same upper
bound as the corresponding cages of the wrapped
hierarchy.

Let Tu denote the subtree rooted at a vertex u of
T (N ) and let nl(u) be the number of leaves in Tu.

Theorem 2 The radius of any cage C(v) of layered
hierarchy T (N ) is at most δ(nl(v) − 1)/2 + ρmax,
where nl(v) is the number of leaves for a tree is
rooted at v.

5 Collision Detection for Layered Hierarchy

An useful tool for the collision testing is a separating
family [2].

Definition 4 (Separating Family) A separat-
ing family Σ = {(u, v)} is a set of pairs of nodes
of a volume bounding hierarchy satisfying the
following properties:

1. If (u, v) ∈ Σ then C(u) and C(v) are disjointed.

2. For any two non-adjacent beads Bp, Bm ∈ N ,
there is a pair (u, v) ∈ Σ such that Bp ⊆ C(u)
and Bm ⊆ C(v).

To derive a bound for the layered hierarchy we
analyze a separating family Σ built by the follow-
ing algorithm for collision detection. The algorithm
starts with the pair Q = {(root, root)} and, for a
pair (u, v) ∈ Q such that C(u)∩C(v) 6= ∅, replaced
it by at most 4 pairs of children of u and v. Our
analysis is based on the analysis of the wrapped hi-
erarchy by Guibas et al. [2].

Lemma 3 If (C(u), C(v)) ∈ Σ then the cage C(v)
is contained in K − C(u) where K is the ball con-
centric with C(u) and of radius 4(δnl(u) + ρmax).

Theorem 4 Let HL be the layered hierarchy for a
necklace N in Rd, d ≥ 3 with n beads. Algorithm
2 builds the unique separating family Σ for N of
size O(n2−2/d). This bound is asymptotically tight
in the worst case.
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