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Abstract We develop a theoretical framework for
constructing parallel guaranteed quality Delaunay planar
meshes using commercial off-the shelf software (COTS).
We call two points Delaunay-independent if they can be in-
serted concurrently without destroying the conformity and
Delaunay properties of the mesh. First, we present a suf-
ficient condition of Delaunay-independence. It is based on
the distance between points, can be verified very efficiently
and used in practice. Second, we show that a simple block
mesh decomposition can be utilized in order to guarantee a-
priori Delaunay-independence of points in certain regions.
Third, we derive an expression which relates three mesh
quality and size parameters that allow to conduct the pre-
processing step of our approach using a sequential Delau-
nay refinement algorithm. We conclude with our current
work in progress that includes extending the presented ap-
proach to generate nonuniform graded meshes.

Introduction

Nave, Chrisochoides, and Chew [7] presented a practical
provably-good parallel mesh refinement algorithm for polyhe-
dral domains. The approach in [7], due to absence of sequential
code reuse, as well as intensive unpredictable communication
and setbacks, is labor intensive. In this paper, we develop an
approach which allows to use COTS, requires only structured
bulk communication, and eliminates setbacks by ensuring that
the inserted points are Delaunay-independent.

Linardakis and Chrisochoides [6] described a Parallel Do-
main Decoupling Delaunay method for 2-dimensional domains,
which is capable of leveraging the serial meshing codes. How-
ever, it is based on the Medial Axis which is very expensive and
difficult to construct for 3-dimensional geometries. The ap-
proach developed in the present work is domain decomposition
independent, i.e. it does not require an explicit construction of
internal boundaries.

Blelloch, Hardwick, Miller, and Talmor [2] describe a divide-
and-conquer projection-based algorithm for constructing De-
launay triangulations of pre-defined point sets in parallel. Our
goal, though, is to refine an existing mesh by inserting triangle
circumcenters, i.e., the set of points in the final mesh is not
known in advance.

Kadow in [5] extended [2] for parallel mesh generation. The
principal difference between [7] and [5] is that in [5] the need
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to construct an initial mesh sequentially is eliminated.
Edelsbrunner and Guoy [4] define the points x and y as in-

dependent if the closures of their prestars (or cavities [7]) are
disjoint. We start with proving a similar condition of point
independence [3]. Our formulation is less restrictive: it allows
the cavities to share a point. However, computing the cavities
and their intersections for all candidate points is very expen-
sive. That is why we do not use coloring methods that are
based on the cavity graphs and we prove a theorem, which al-
lows to use only the distance between the points for checking
their Delaunay-independence. The minimum separation dis-
tance argument in [4] is used to derive the upper bound on the
number of inserted vertices and prove termination, but not to
ensure point independence.

Spielman, Teng, and Üngör [9] presented the first theoreti-

cal analysis of the complexity of parallel Delaunay refinement

algorithms. However, the assumption is that the global mesh

is completely retriangulated each time a set of independent

points is inserted [11]. In [10] the authors developed a more

practical algorithm which takes O (logm) time (i.e. number of

parallel iterations) using m processors, where m is the size of

the output. In contrast, our approach [3] uses only four par-

allel refinement iterations with a fixed number of processors,

where each iteration on a single processor is performed by a

sequential mesher [8]. The present work is an extension of the

work we presented in [3].

The Theoretical Framework

Sequential Delaunay refinement algorithms are based on in-
serting circumcenters of triangles which violate the required
bounds, e.g. the upper bound ρ̄ on circumradius-to-shortest
edge ratio, and the upper bound ∆̄ on triangle area. Let the
cavity CM(p) of point p with respect to mesh M be the set of
triangles in M, whose open circumdisks include p. We expect
our parallel Delaunay refinement algorithm to insert multiple
circumcenters concurrently in such a way that at every itera-
tion the mesh will be both conformal and Delaunay. Figure 1
illustrates how the concurrently inserted points can violate one
of these conditions.

Theorem 1 Let r̄ be the upper bound on triangle circumradius

in the mesh and pi, pj ∈ Ω ⊂ R
2. Then if ‖pi − pj‖ ≥ 4r̄, then

independent insertion of pi and pj will result in a mesh which

is both conformal and Delaunay.

To show that Theorem 1 is applicable throughout the
run of the algorithm, we prove that the execution of the



p
9

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

p
10

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

(a) (b)

Figure 1: (a) If 4p3p6p7 ∈ C(p8) ∩ C(p9), then concurrent
insertion of p8 and p9 yields a non-conformal mesh. Solid lines
represent edges of the initial triangulation, and dashed lines —
edges created by the insertion of p8 and p9. Note that the inter-
section of edges p8p6 and p9p7 creates a non-conformity. (b) If
edge p3p6 is shared by C(p8) = {4p1p2p7, 4p2p3p7, 4p3p6p7}
and C(p10) = {4p3p5p6, 4p3p4p5}, the new triangle 4p3p10p6

can have point p8 inside its circumdisk, thus, violating the De-
launay property.

# of Pipe with holes Unit square
pro- Time, # of elmnts, Time, # of elmnts,

cessors sec. ×106 sec. ×106

4 179.1 14.6 293.7 23.8

64 273.6 233.3 300.1 470.7

121 212.7 441.1 293.7 873.5

Table 1: Scaled workload, the area bound is inversely propor-
tional to the number of processors.

Bowyer/Watson kernel [7], either sequentially or in parallel,
does not violate the condition that r̄ is the upper bound on
triangle circumradius in the entire mesh.

Theorem 2 The condition that r̄ is the upper bound on trian-

gle circumradius in the entire mesh holds both before and after

the insertion of a point.

In order not to check the independence condition for every
pair of candidate points, we utilize a coarse-grained domain
decomposition scheme. A coarse uniform lattice is overlapped
over the triangulation domain in such a way that any pair of
points in non-adjacent cells are guaranteed to be no less that
4r̄ apart. To enforce the r̄ circumradius bound in the mesh we
derive the following relation which allows to use the standard
sequential Delaunay refinement algorithms for preprocessing:

Theorem 3 If ρ̄ and ∆̄ are upper bounds on triangle

circumradius-to-shortest edge ratio and area, respectively, then

r̄ = 2(ρ̄)3/2
√
∆̄ is an upper bound on triangle circumradius.

Some results for shared and distributed memory implemen-

tations1 are shown in Tables 1 and 2. Table 1 also indicates

that there is potential for improvement by using the Load Bal-

ancing Library [1].

1This work was performed using computational facilities at the

College of William and Mary which were enabled by grants from

Sun Microsystems, the National Science Foundation, and Virginia’s

Commonwealth Technology Research Fund.

# of Time, sec. Time, sec. # of elmnts,
processors MPI OpenMP ×106

4 220.3 214.1 14.6

Table 2: Pipe cross-section, distributed (MPI) and shared
(OpenMP) memory implementations.

Figure 2: Graded mesh of Jonathan Shewchuk’s key. The
parallel refinement is guided by a quadtree.

Conclusions and Work In Progress

The approach we developed allows the use of sequential
COTS for guaranteed quality parallel meshing.

Currently, we are working on extending our results to graded

meshes like the one shown in Fig. 2 by using a quadtree instead

of a uniform lattice, and to 3 dimensions.
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