
Fast almost-linear-sized nets for boxes in the plane
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1 Introduction

Let B be any set of n axis-aligned boxes in Rd, d ≥
1. For any point p, we define the subset Bp of B as
Bp = {B ∈ B : p ∈ B}. A box B in Bp is said
to be stabbed by p. A subset N ⊆ B is a (1/c)-net
for B if Np 6= ∅ for any p ∈ Rd such that |Bp| ≤ n/c.
The number of distinct subsets Bp is O((2n)d), so the
set system described above has so-called finite VC-
dimension d. This ensures that there always exists
(1/c)-nets of size O(dc log(dc)), and that they can be
found in time Od(n)cd, using quite general machinery
(see for example the books by Matoušek [3] or by
Pach and Agarwal [7]). For some set systems, such
as halfplanes in R2 and translates of a simple closed
polygon, it was shown that there exist (1/c)-nets of
size O(c) [4]. This was extended to halfspaces in R3

and pseudo-disks1 in R2 [2].
In this paper, we investigate a fast, O(n log c)-time
construction of (1/c)-nets of size O(c) for any value
1 < c ≤ n and d = 2. Until right before JCDCG, I
thought I could prove the following (which unfortu-
nately remains a conjecture):

Conjecture 1 Let B be a set of n axis-aligned boxes
in R2 and c be any parameter 1 ≤ c ≤ n. Then there
exists a (1/c)-net N for B of size O(c).

We can prove this result and also provide algorithms
that run in time O(n log c) only for special cases: seg-
ments on the real line (the one-dimensional case),
quadrants of the form (−∞, x]× (−∞, y] in R2, and
unbounded boxes of the form [x1, x2]×(−∞, y] (which
we call a skyline). For the general case of boxes, we
can prove a size bound of O(c log log c). But the con-
jecture still stands.
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1In this context, a collection of shapes is called a pseudo-
disk set system if given any three points, there is at most one
shape in the collection whose boundary passes through these
three points.

2 Intervals on the line

We first prove that it is easy to find small nets for
intervals on the line, the one-dimensional case of the
problem above.

Theorem 2 Let B be a set of n intervals on the real
line R and c be any parameter 1 < c ≤ n. There
exists a subset N of at most 2dc− 1e boxes in B that
is a (1/c)-net for B. Such a set can be found in O(n+
n log c) time.

3 Rectangles in the plane

We generalize the method of the previous paragraph
to the plane. We begin with the easier problem when
all the boxes are south-west quadrants, i.e. they con-
tain the point (−∞,−∞).

Theorem 3 Let B be a set of n quadrants with the
same orientation in R2, and c be any parameter 1 <
c ≤ n. Then there exists a (1/c)-net N for B of size
dc− 1e. Such a net can be found in time O(n log c).

Let us add one more side to the quadrants: a skyline
is a set of boxes that all intersect a common line. We
are only interested in what happens on one side of
that line, so we can consider unbounded boxes of the
form [x1, x2]× (−∞, y]. We can extend the previous
result to a skyline.

Theorem 4 Let B be a set of n axis-aligned boxes,
all unbounded in some common direction, and c be
any parameter 1 < c ≤ n. Then there exists a (1/c)-
net N for B of size at most d2c− 1e. Such a net can
be found in time O(n log c).

Using this result, we can now solve the general prob-
lem for boxes. Unfortunately, we cannot solve the
conjecture, but we can prove:
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Theorem 5 Let B be a set of n axis-aligned boxes in
R2 and c be any parameter 1 < c ≤ n. Then there
exists a (1/c)-net N for B of size O(c log log c). Such
a net can be found in time O(n log c).

4 k-oriented objects

A natural generalization of boxes in R2 is that of a k-
oriented convex polygon [6], which is simply a convex
polygon whose sides are constrained to be parallel to
a set of k fixed directions (k = 2 for boxes). Our
proof extends there as well. In fact, we suspect that
any result for boxes would extend to k-oriented poly-
gons where the constants in the O() notations become
functions of k. But we have no proof of such a general
statement.

5 Orthants in higher dimension

As shown in the previous section, the key problem is
that for the generalized orthants, which we call or-
thants for short. We are now interested in this prob-
lem for any dimension. We first prove that finding
nets for orthants does indeed help for boxes.

Theorem 6 Assume that there exists ε-nets of size
s(ε) for any set of orthants in Rd, and that s() is non-
decreasing and has polynomial growth (which implies
s(O(x)) = O(s(x))). Let B be a set of n boxes in Rd

and c be any parameter 1 ≤ c ≤ n. Then there exists
a (1/c)-net N for B of size Od(s(1/c)). Such a net
can be found in time O(n log c).

Now we show how small nets we can find efficiently
for orthants. The bound is far from optimal for di-
mensions greater than 2, as nets of size Od(c log c)
exist but take much longer to compute (see the intro-
duction).

Theorem 7 Let B be a set of n orthants with the
same orientation in Rd and c be any parameter 1 ≤
c ≤ n. Then there exists a (1/c)-net N for B of size
Od(cd−1). Such a net can be found in time O(n log c).

For points and halfspaces in Rd, Matoušek, Seidel,
and Welzl [4] have shown that there exist ε-nets of
size O(1/ε). They also show that it suffices to restrict
to points in convex position, albeit by having nets
bigger by a factor of d. We prove an analog result for
orthants, without the blowup factor. The analogue
of convex position for orthants is maximal position,
as defined in [8].

Lemma 8 Suppose there exists a ε-net of size s(ε)
for any set of orthants in Rd in maximal position.
Then there exists an ε-net for any set of orthants in
Rd of size s(ε).

6 Conclusion

This shows another set system where the general
bound O(c log c) for a (1/c)-net could be improved
to O(c), and more efficient algorithms can be found.
Komlos, Pach and Woeginger [2] have shown that
there exist set systems for which (1/c)-nets must have
size Ω(c log c).
This also poses the analog problem of finding good
approximations, in the sense that not only does p hit
few boxes if it misses N , but the number of hits in N
reflects the number of hits in B (scaled by |N |/|B|).
The approach above seems to collapse because noth-
ing guarantees the representativity of N .
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