
Detecting Duplicates Among Similar
Bit Vectors

(of course, with geometric applications)

Boris Aronov1 and John Iacono2

Abstract We show how to detect duplicates in a
sequence of k n-bit vectors presented as a list of
single-bit changes between consecutive vectors, in
O((n + k) log n) time.

Problem We are given a sequence S = {v1, . . . , vk}
of k n-bit vectors, presented as follows: The first bit
vector is all zeros and each subsequent vector vi is
obtained from the previous vector vi−1 by flipping a
single bit in position bi, 0 ≤ bi < n. S is represented
as b2, b3, . . . , bk. The problem is to detect duplicates
in the sequence v1, v2, . . . , vk. More formally, we seek
a labeling S → {1, . . . , k}, vi 7→ ci, such that ci = cj

iff vi = vj .

Solution Without loss of generality in the remainder
of this note we assume that n is a power of two. Let T
be the perfectly balanced binary tree on n leaves. We
number the leaves of T from 0 to n− 1 and associate
each with a bit position. Each interior node x of T is
similarly associated with a block B(x) of consecutive
bit positions corresponding to the leaves of the sub-
tree rooted at x. For a bit vector vi, let vi(x) be its
substring in B(x). The idea behind our data struc-
ture is simple: each node x has an associated data
structure that stores implicitly the set

⋃k
i=1{vi(x)}.

The data structure stored at node x consists of two
arrays Dx and Fx that store the following data:

• Dx[1, . . . , dx] contains the sorted set including 1
and all distinct values i, 1 < i ≤ k, such that
vi−1(x) 6= vi(x).

• Fx[1, . . . , dx] contains integers in the range
1, . . . , dx with the property that Fx[i] = Fx[j]
iff vDx[i](x) = vDx[j](x).

1Research supported in part by NSF ITR Grant CCR-00-
81964 and by a grant from US-Israel Binational Science Foun-
dation; part of work has been carried out while visiting Max-
Planck-Institut für Informatik. Department of Computer and
Information Science, Polytechnic University, 5 MetroTech Cen-
ter, Brooklyn, NY 11201 USA; http://cis.poly.edu/˜aronov.

2Research supported in part by NSF grant CCF-0430849.
Department of Computer and Information Science, Polytechnic
University, 5 MetroTech Center, Brooklyn, NY 11201 USA;
http://john.poly.edu.

We now complete the description of our algorithm,
by explaining how to initialize Dz and Fz for all
leaves z ∈ T and how to compute Dx and Fx from
Dl, Fr, Dl, Fr for any internal node x with children l
and r. Froot describes the desired labeling of S, since
Droot contains all the numbers 1, . . . , k.

If one stores all of the leaves z in an array in numeri-
cal order, a linear scan of the sequence b2, b3, . . . , bk of
bit updates allows one to initialize arrays Dz and Fz,
for all z. Specifically, we store the current bit vector
vi−1 explicitly in a bit array V [0, . . . , n − 1]. Since
bi = j indicates a bit flip in position z = j (recall
that bit positions, and thus leaves are identified with
integers 0, . . . , n− 1), we flip the value of V [j], add j
to Dz, and depending on the resulting value of V [j],
set the next entry in Fz to zero or one.

Algorithm 1 The pseudocode for computing Dx, Fx

from Dl, Fl, Dr, Fr.
1: i← j ← k ← 1
2: Dl[dl + 1]← DR[dr + 1]←∞
3: repeat
4: Px[k]← (Fr(i), Fl(j), k, 0)
5: if Dl[i] < Dr[j] then
6: Dx[k]← Dl[i]; i← i + 1
7: else if Dl[i] = Dr[j] then
8: Dx[k]← Dl[i]; i← i + 1; j ← j + 1;
9: else if Dl[i] > Dr[j] then

10: Dx[k]← Dr[j]; j ← j + 1;
11: end if
12: k ← k + 1;
13: until i = dl + 1 and j = dr + 1
14: dx ← k − 1 . dx is the length of Px and Dx

15: Sort Px lexicographically on the first two fields,
by radix sort

16: for k ← 2 to dx do
17: if Px[k − 1][1] = Px[k][1] and Px[k − 1][2] =

Px[k][2] then
18: Px[k][4]← Px[k − 1][4]
19: else
20: Px[k][4]← Px[k − 1][4] + 1
21: end if
22: end for
23: for k ← 1 to dx do
24: Fx[Px[k][3]]← Px[k][4]
25: end for

Now, we describe, for an internal node x of T with
children l and r, how to construct Dx, Fx from arrays
Dl, Dr, Fl, Fr; see Algorithm 1. The new sorted array
Dx[1, . . . , dx] is built by merging the arrays Dl and
Dr, eliminating any duplicates, in time O(dl + dr) =

1



O(dx). Simultaneously, we create an auxiliary array
Px[0, . . . , dx] that records how the merge step has
proceeded; it consists of quadruples of items. Refer
to lines 1–13. We clearly have

Lemma 1. The array Dx as constructed is correct.
The first two columns of the array Px contain pairs of
integers in the range 1, . . . , dx with the property that
(Px[i][1], Px[i][2]) = (Px[j][1], Px[j][2]) iff vDx[i](x) =
vDx[j](x). The third column just numbers the rows of
Px consecutively.

The array Px contains all the information we need,
in a sense, but not in the right order. At this point we
radix-sort Px according to the first two fields, in two
passes. As Px is of size dx and each of these fields is
a positive integer no larger than dx, this takes O(dx)
time. In lines 16–22, we number the rearranged lines
of Px consecutively, ignoring duplicate pairs in the
first two columns. These integers will be used to fill
in Fx and are guaranteed to be in the range 1, . . . , dx.
This takes time O(dx). We finally fill the array Fx

using the data in Px, as detailed in lines 23–25. A
few minutes of contemplation will convince the reader
that the following lemma holds.

Lemma 2. The array Fx contains integers in the
range 1, . . . , d with the property that Fx[i] = Fx[j] iff
vDx[i](x) = vDx[j](x).

Application Suppose one is interested in computing
an arrangement of n simple shapes (such as disks,
triangles, or halfplanes) in R2. There are plenty of al-
gorithms, including deterministic ones, that can solve
this problem in O(n2 log n) time for a variety of shapes.
But what if, in addition to the face structure of the
arrangement, one is interested in labeling the faces
with the bit vector indicating which of the objects
each face belongs to? Clearly, an explicitly stored
labeling is too expensive, requiring Θ(n3) bits in the

worst case. However, traversing the arrangement by
an Eulerian path of the face incidence graph allows
one to encode the bit vectors using single-bit flips
between consecutive vectors along the path. In par-
ticular using the algorithm described above, we can
detect which faces correspond to identical vectors and
thus are contained in identical sets of shapes. The
process takes O(n2 log n) time. An entirely analogous
process can process an arrangement of n objects in
any dimension, traversing k cells in O((n + k) log n)
time, provided adjacent cells differ only in a single con-
tainment and an adjacency structure encoding local
bit differences is available.

Note that the assumption that the first bit vector
in the sequence is all zeros can be dropped without
changing our algorithm. Also observe that our algo-
rithm can be used with slight modifications to de-
tect duplicates among bit vectors coming from several
sequences—one just needs to artificially concatenate
the sequences together by using dummy intermediate
vectors, if the number of sequences is small. This will
result in an additional O(n log n) cost per concate-
nation. A less brute-force approach to dealing with
multiple sequences which results in a O(n) concatena-
tion cost will be described in the full version of this
paper.

A geometric application with two sequences of bit
vectors was presented in [1].

Reference

[1] P.K. Agarwal, B. Aronov, V. Koltun, “Effi-
cient Algorithms for Bichromatic Separability,”
manuscript, 2004. Preliminary version appeared
in Proceedings 15th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2004), 2004,
pp. 675–683.

2


