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Given two points a and b in the plane, draw n equally-
spaced curves, C1�C2� � �� �Cn between them. More for-
mally, those curves must satisfy the equi-distant prop-
erty: for any point p on any such curve Ci�1 � i � n
the two adjacent curves Ci�1 and Ci�1 are equally dis-
tant, that is, d�p�Ci�1� � d�p�Ci�1�, where d�p�C� is
the distance from p to the point on a curve C that is
closest to p. We define C0 � a and Cn�1 � b as de-
generate curves. So, we have d�p�C0� � d�p�a� and
d�p�Cn�1� � d�p�b�.

This problem is related to wire routing in printed cir-
cuit boards. In a new production technology more than
one wires can be put between two pins. Then, it is de-
sired to draw those wires so that they are equally spaced
due to electrical constraints.

It is easy to draw one curve (line) between two points.
It is simply a perpendicular bisector of the two points. It
is also rather easy to draw three equally-spaced curves.
The middle one is the perpendicular bisector of the two
points and the remaining two curves are parabolas, each
of which is a curve equidistant from a point and a line.

The case n � 2 is not easy. In this short paper we
prove that we can draw two such equally spaced curves
although we have no analytic equations for the curves.
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For simplicity but without loss of generality we fix the
two points a and b: a � �3�0� and b � ��3�0�. We
denote the two curves by Ca and Cb, which are charac-
terized as follows:
(1) For any point p on Ca, d�p�a� � d�p�Cb�, and
(2) for any point p on Cb, d�p�b� � d�p�Ca�.

The curves Ca and Cb must pass through the
points �1�0� and ��1�0�, respectively, and the distance
d�p�Ca�, for example, is given as the length of a line
segment directed from p perpendicularly to the curve
Ca.

Now, take any point p on Ca. Then, we have d�p�a��
d�p�Cb� It implies that the circle centered at p with the
point a on it must be tangent to the curve Cb at a unique
point, which is denoted by q p. The point qp on Cb is
called an image of the point p on Ca.

Fig. 1 shows this tangential property.
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Figure 1: Tangential property.

By this tangential property we can guess a rough
shapes of Ca and Cb, that is, they are smooth and convex
toward the origin since they are envelopes of circles. As
a point p goes to infinity along the curve Ca, the radius
of its associated circle approaches to infinity, and finally
it converges to a line.
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The properties described above suggest equations spec-
ifying the curves Ca and Cb, but it seems to be hard to
obtain analytic representations of the curves. Our strat-
egy here is to compute rough shapes of the curves. For
that purpose, we partition the plane into small squares
of side length ε and remove all squares that cannot in-
tersect the curves (see Fig. 2 for illustration). Due to the
symmetry of the curves Ca and Cb, we only consider Ca.

Given a value of ε � 0, the plane is partitioned
into squares. Each such square is specified by two-
dimensional indices, as

si� j � �iε� �i�1�ε�� � jε� � j�1�ε�� (1)

We start with finding a square s0� j which contains the
point �1�0�, the intersection of the curve Ca with the x-
axis, and then remove all other squares with i � 0. At
i � 1, we take squares near the square s0� j containing
�1�0� and check their feasibility.

Feasible squares are defined as follow:
(1) The square containing the point �1�0� is feasible.
(2) A square si� j is feasible if there exists a feasible
square si�� j� such that

(i) i� � i,
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Figure 2: Feasible squares with related distances.

Figure 3: Two curves drawn by our approximation algo-
rithm.

(ii) �dmin�si� j�a��dmax�si� j�a��� �dmin�si� j� si��� j���
dmax�si� j� si��� j��� �� /0, and

(iii) there exists no square si”� j” such that
dmax�si� j� si”�� j”� � dmin�si� j�a�,

where note that if a square si� j on the curve Ca is feasible
then the square si�� j is a feasible square on the curve Cb.
dmin�si� j�a� and dmax�si� j�a� are the minimum and max-
imum distances between the square si� j and the point a,
and dmin�s� s�� and dmax�s� s�� are the minimum and max-
imum distances between two squares s and s�.

Once we have feasible squares si� j� si� j�1� � �� � si�k for i,
a set of feasible squares for i�1 should start somewhere
around j and end somewhere near k on i� 1. Fig. 3
shows our implementation result.
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There are some curves and lines that characterize the
equally-spaced curves Ca and Cb. Because of sym-

metricity of the curves we only consider the upper
halves of Ca and Cb.

What is an optimal pair of half lines to approximate
them to minimize the error? Because of their symmtric-
ity, we can assume that a pair y � cx � d�x � 0 and
y � �cx � d�x � 0 is optimal, where c�d � 0. An er-
ror for a point p�x�y� on y � cx � d is given by the
difference between the distance from p to a and the
length of a perpendicular line segment from p to the line
y ��cx� d. If we denote the other endpoint of the seg-
ment by �x��y��, then the difference d is given by

d �
�

�x�1�2 � y2�
�

�x� x��2 ��y� y��2

�
�x�1�2 � y2� �x� x��2� �y� y��2

�
�x�1�2 � y2 �

�
�x� x��2 ��y� y��2

�

For this difference to converge as x goes to infinity, the
coefficient of x2 in the numerator must be 0, that is, c �
1.

Now, the difference is simplified to

d �
2�d�1�x�1�d2

�
�x�1�2 ��x�d�2 �

�
2x2

�

It is minimized when d � 1. In fact, when c � d � 1,
the difference converges to 0 as x goes to infinity.

We have shown that an optimal pair of half lines to
approximate the curves is given by y � x�1�x � 0 and
y � �x�1�x � 0. However, it does not imply that they
are asymptotes of the curves. For any point p on Ca its
corresponding point q p on Cb that is closest to p on Cb
is defined as the image of p. If we move a point p along
Ca toward infinity, its image also moves on Cb in the
direction away from the origin. Then, does it also go to
infinity? The answer is no. Images cannot go beyond
some point q∞ on Cb.

This also means that if a point p on Ca is sufficiently
far away from the origin then it must be close to the
bisector of the two points a and q∞. So, the bisectors
can be considered as the asymptotes of our curves.
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We are now working on a Voronoi diagram based on the
curves defined here. We call it a Voronoi diagram with
neutral zones. We have obtained preliminary results.
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