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The floodlight illumination problem asks whether there
exists a one-to-one placement of n floodlights illuminat-
ing infinite wedges of angles α1, . . . , αn at n locations
p1, . . . , pn in a plane such that a given infinite wedge W

of angle θ located at point q is completely illuminated by
the floodlights. We prove that this problem is NP-hard,
closing an open problem from CCCG 2001 [2]. In fact, we
show that the problem is NP-complete even when αi = α

for all 1 ≤ i ≤ n (the uniform case) and θ =
∑n

i=0
αi

(the tight case). We discuss various approximate solu-
tions and show that computing any finite approximation
is NP-hard while ε-angle approximations can be obtained
efficiently. Most proofs are omitted in this abstract due to
lack of space. Interested readers are referred to [1].

1 Preliminaries

A generalized wedge is a wedge with a continuous finite
region adjacent to its apex removed. The FLOODLIGHT
ILLUMINATION problem on generalized wedges is as fol-
lows: given n sites p1, . . . , pn, n angles α1, . . . , αn, and
a generalized wedge W , determine whether there is an as-
signment of angles to sites along with angle orientations
that illuminates W . In the tight illumination problem, the
sum of floodlight spans

∑

αi equals the wedge angle. A
different specialization is the uniform problem, where in
addition to being tight, αi = αj for all i, j.

We now look at the related problem of MONOTONE
MATCHING Suppose we are given n lines in the plane,
n + 1 vertical lines defining n finite width vertical slabs,
and two points, one on the leftmost vertical line and one
on the rightmost. Call this an arrangement of lines and
slabs, and denote it by (L, S, λ, ρ), where L is the set
of lines, S ≡ {s1, . . . , sn+1} is the set of vertical lines
x = si forming slabs, and λ and ρ are the two special
points on the lines x = s1 and x = sn+1, respectively.
A monotone matching in (L, S, λ, ρ) is a set of n line
segments, each a portion of a unique line and spanning
a unique slab, such that the following holds: (1) the left

end point of the first segment is above λ, (2) the left end-
point of each subsequent segment is above the right end-
point of the segment in the previous slab, and (3) ρ is
above the right endpoint of the last segment. In the more
general problem of PSEUDOLINE MONOTONE MATCH-
ING, one has to check whether a given arrangement of
pseuodolines1 and slabs admits a monotone matching.

The floodlight illumiination problem can be related to
the monotone matching problem through duality as de-
scribed by Steiger and Streinu [3].

As a tool for our main result, we use NP-completeness
of the problem of finding whether a given directed graph
has a directed disjoint cycle cover.

Theorem 1. DIRECTED DISJOINT CYCLE COVER is NP-
complete, even for graphs with indegree and outdegree
each bounded above by 3, as well as for graphs with out-
degree exactly 3 and indegree at most 4.

2 Floodlight Illumination is NP-Hard

To give a flavor of the proof of our main result, we prove
the following result in this abstract:

Theorem 2. PSEUDOLINE MONOTONE MATCHING is
NP-complete.

The most important gadget is the forcing gadget, shown
in Figure 1. This is a sequence of slabs associated with
pseudolines that forces the line used previous to the gad-
get to end below a chosen point, and the line used after
the gadget to start above another chosen point.

Proof of Theorem 2. As a potential matching can easily
be verified in polynomial time, this problem is in NP. The
proof of NP-hardness is by a reduction from the bounded
degree version of DIRECTED DISJOINT CYCLE COVER
(see Theorem 1).

1A pseudoline is a curve in R
2 that intersects any vertical line in

exactly one point. A collection of pseudolines is a set of pseudolines no
two of which intersect more than once.
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Figure 1: The forcing gadget. The arrows show how any
lines used before or after the gadget are constrained.

Suppose we are given a directed graph G = (V, E)
with the outdegree of all vertices exactly 3 and the inde-
gree at most 4. We will have gadgets In(v) and Out(u)
for u, v ∈ V as shown in Figure 2. Let I(v) ⊂ E be in
the in-edges of v, and let O(u) ⊂ E be the out-edges of
u. By our choice of G, |I(v)| ≤ 4 and |O(u)| = 3.
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Figure 2: Graph gadgets In(v) and Out(u).

Let n = |V | and m = |E|. We will use m primary
pseudolines, each corresponding to an edge in E. There
will be a number of auxiliary pseudolines used in forc-
ing gadgets. The Out(·) gadgets and In(·) gadgets will
be arranged in sequence as shown in Figure 3. The pri-
mary pseudoline corresponding to edge (u, v) will first
pass through Out(u), and then pass through In(v).

We claim that when arranged as in Figure 3 along with
appropriate forcing gadgets for each In(·) and Out(·)
gadget, exactly one e ∈ I(vi) is used in In(vi) and ex-
actly one e ∈ O(vi) is not used in Out(vi), 1 ≤ i ≤ n.

A directed disjoint cycle cover of G is equivalent to a
permutation π on the vertices, where π(v) is the predeces-
sor of v in the cycle containing v. If such a permutation
exists, then a monotone matching exists, by not selecting
the edge at Out(u) corresponding to π−1(u), and select-
ing the edge corresponding to π(v) at In(v). Conversely,
if a monotone matching exists, then the permutation π can
be recovered by setting π(v) equal to the edge that is used
in In(v). This completes the reduction.

The proof of NP-hardness of MONOTONE MATCH-
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Figure 3: Overall view of the reduction from DIRECTED
DISJOINT CYCLE COVER.

ING with straight lines is based on the same idea but is
somewhat more involved. The details can be found in [1].
From the duality between monotone matching and flood-
light illumination, we have

Theorem 3. FLOODLIGHT ILLUMINATION is NP-hard.
The tight, restricted, and uniform versions of the problem
are NP-complete.

3 Approximate Illumination

We now look at approximation algorithms to solve the
floodlight illumination problem in the tight case. Let F be
an illumination of a wedge W . F is a finite-approximation
if it illuminates W \ S, where S is a finite region. F is an
ε angle-approximation if it illuminates W \ Sε, where Sε

is a union of wedges whose total angle is at most ε. We
have the following result:

Theorem 4. For the tight floodlight illumination problem,
computing a finite-approximation is NP-hard, where as
for any ε an ε angle-approximation can be found in poly-
nomial time.
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