Dynamic Update of Half-space Depth Contours
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Data depth is an approach to statistical analysis based
on the geometry of the data. Half-space depth' has
been studied most frequently by computational geome-
ters. The half-space depth of a point x relative to a
set of points S = {X1,..., X,,} in R? is the minimum
number of points of S lying in any closed half-space de-
termined by a line through = [2, 11]2. Depth contours,
enclosing regions with increasing depth, help to visu-
alize, quantify and compare data sets. Prior work in-
vestigated combinatorial properties and algorithms for
computation of depth contours for static data sets. We
present a dynamic algorithm for computing the two-
dimensional rank-based half-space depth contours of a
set of n points in O(nlogn) time per operation and
in O(n?) overall space, an improvement over the static
version of O(n?) time per operation. The same al-
gorithm can compute the half-space depth of a single
point relative to a data set dynamically in O(logn)
time and O(n) space. The algorithm does not com-
pute the entire set of contours explicitly but main-
tains the order (ranking) of points according to their
half-space depth. A constant number of contours (e.g.
10%, - - - 100%) can be constructed in O(n) time from
the sorted list of the data points, ranked by depth.
Our algorithm uses generalized dynamic segment trees
to update the depth of every data point and is based
on key characterizations of the potential changes in the
depth contours upon insertions or deletions®. We only
consider data sets in general position.

1 Preliminaries

The statistics community produced contradictory def-
initions for depth contours. The two main approaches
were termed cover and rank [9]. The cover approach
defines the contour of depth k as the boundary of the
set of points in R? with depth > & (for half-space depth
1 <k < [%]). The cover-based half-space depth con-
tour is provably the boundary of the intersection of all
closed half-planes containing exactly n — k + 1 data
points whose bounding line passes through two data
points. The rank approach defines the ath central
region as the convex hull containing the most central
fraction of a sample points [5]. The a-central rank-
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3A detailed analysis can be found in [8] where we also present
an O(nlog?n) time and over all O(n?) space algorithm for dy-
namically computing cover-based half-space depth contours.
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based half-space-depth contour is constructed by sort-
ing all points of the original set according to their half-
space depth, yielding { X[y}, - -+ X}, }, the ranking order
of the points and taking the convex hull of data points
X(js - X[a)- Both approaches assign the same depth
value to points that are members of the data set S and
create depth contours that are nested. The main visual
difference: vertices of the rank contours are only data
points while vertices of the cover contours can be any
point from the data set.

Algorithms have existed for some time for construct-
ing depth contours in 2 and higher dimensions under ei-
ther definition. The best 2-D implementation for com-
puting the ranking order of a set of points or all cover-
based depth contours runs in ©(n?) [6]. Other imple-
mentations (e.g. [10, 3]) compute cover-based contours.

Much prior work exists on dynamic geometric struc-
tures (e.g. [7, 1]). To the best of our knowledge, we
present the first dynamic algorithm for computation of
half-space contours, addressing prior interest [4].

2 The Algorithm

Rank-based contours do not have the appealing proper-
ties of the cover-based contours: e.g. a unique structure
that is relatively easy to update. Our algorithm uti-
lizes the fact that a data point has equal depth values
under the cover and rank approaches, and computes
the rank-based contour by considering the cover-based
contours. Thus, the analysis of our algorithm for the
rank-based contours refers to the complexity of cover-
based contours.

A key idea is, for each data point p, to consider ev-
ery directed line [ passing through p and another data
point and the associated closed half-plane H; to its
right. H; is represented by the unit vector vy, associ-
ated with [, see figure (a). For each point p there is
a set of 2(n — 1) unit vectors, that can be thought of
as points on the unit circle, centered at p. Every point
r € S\{p} is assigned to two antipodal vectors, #¢owards
and Fauway (Where Fiouwaerds 1S the vector pointing to-
wards 7). When a point ¢ is inserted into or deleted
from the data set, exactly the half-planes with associ-
ated vectors in the semi-circle counter-clockwise from
Gtoward 0 away have their depth incremented or decre-
mented. These half-planes are updated simultaneously,
to recompute the depth of p efficiently. To do so we use
the concept of defining lines, half-planes and edges. If
p represents a data point of depth k with respect to set
S of n points, p will appear ezactly once on the (cover)
contour of depth k. If p is on a non-degenerate contour
it has exactly two incident edges, the defining edges of
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p, on the contour of depth k. Every edge on any depth
contour is a sub-segment of a line created by joining
two data points g1, g2 of the set S. The defining lines
l1,1ly for p with respect to S are the lines containing
p’s defining edges. Each defining line I;, ¢ € {1, 2}, bi-
sects the plane into two closed half-planes containing
k+1 and n — k + 1 data points where the half-plane
containing k+ 1 points does not contain the k-th depth
contour. The defining half-planes Hy,, H;, for p with
respect to S are the closed half-planes bounded by the
defining lines of p which contain k£ + 1 data points

When point ¢ is inserted into S the cover-based
depth of a point p € S remains unchanged if ¢ is inside
p’s depth contour and can increase only if ¢ is in the
region outside p’s depth contour. The update of every
data point p, when point g is inserted to or deleted from
S, depends on the location of g relative to the defining
lines for p*. Nine cases completely determine how p’s
depth changes and how its two defining lines are trans-
formed®, see figure (b). These updates are computed
in O(logn) time for each data point p: the number of
data points in every half-plane defined by p and each
point in S\ p is recomputed; the defining lines of p with
respect to the new data set SUq or S\ ¢q are found; the
number of data points in the defining half-plane is the
updated depth of p; knowing all half-planes containing
exactly k' + 1 data points and determined by a line
through p and another data point makes it possible to
determine p’s new defining half-planes as well. (Note
that at least one of the defining half-planes for every
data point remains unchanged after a single insertion
or deletion, see [8]).

Data Structures: For efficiency the algorithm uses
new generalized dynamic segment trees. Each tree rep-
resents the half-planes passing through a data point
p € S and is implemented as an augmented dynamic
red-black tree.

To re-sort data points, we use a linked list of buckets
for depths, from 0 to n/2 (the minimum to maximum
possible), to hold all data points. Bucket k holds a

4The data point to be inserted or deleted lies in one of four
regions or one of the defining lines, yielding nine cases.

5For example, if ¢ is inserted into exactly one defining half-
plane Hy,, then p’s depth is unchanged, but H;, is no longer a
defining half-plane. It can be shown that the vector for p’s new
defining half-plane Hy,, is the first vector found by traversing
the vectors starting from VH,, towards VH,, whose associated

half-plane contains k + 1 data points.

linked list of data points of depth k. Upon insertion or
deletion every point ¢ that changes its depth is moved
from its old bucket to a new bucket. Since the depth
of ¢ changes by at most 1, the update takes O(1) time.

3 Open Questions

e The lower bound for computing the half-space
depth rank of data points (and thus their rank
contours) is {2(nlogn), based on reduction to sort-
ing. We are seeking a method to order data points
according to their depth in o(n?).

e To the best of our knowledge, no dynamic algo-
rithm for computing depth contours according to
other depth measures exists. We are working on a
dynamic scheme to compute regression depth con-
tours (envelopes of the arrangement of lines).

e Most real life experiments are high-dimensional.
Since existing static algorithm for computing
depth contours for most data depth measures are
exponential in dimension, dynamic approximation
algorithms for depth contours of multivariate data
are needed.
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