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To p o lo g ic a lly S w e e p in g th e C o m p le te G ra p h in O p tim a l Tim e

Eynat R afalin ∗ D iane S o u v aine ∗

1 In tro d u c tio n
We present a novel, sim ple and easily im plem entable1

approach to sweep a com plete g raph of N vertices and
k intersection points and report all intersections in op-
tim al O(k) = O(N4) tim e and O(N2) space. O u r
m ethod borrows the concept of horizon trees from the
topolog ical sweep m ethod [6] and u ses ideas from [9 ]
to handle deg eneracies. The novelty of the approach is
the u se of a moving w a ll that separates the g raph into
two reg ions at all tim es: the reg ion in front of the wall
that has k nown stru ctu re, and the reg ion behind the
wall that m ay contain intersections g enerated by edg es
that the sweep process has not yet predicted. This
m ethod has applications in com pu ting the sim plicial
depth m edian of a point set in R

2 [1 ]. C ontinu ing re-
search concentrates on m odifying the topolog ical sweep
to work for arbitrary g raphs. For som e sparse g raphs,
where the total size of the cu ts is lim ited, the proposed
alg orithm m ay be particu larly eff ective.

A g raph poses challeng es for a sweep-line alg orithm ,
that are not present in line arrang em ents, and that
m ost ex isting sweep techniq u es do not handle. The
stru ctu re holding the sweep-line statu s needs to be dy-
nam ic, as vertices and edg es are constantly inserted
and deleted. The event points now have two types
and inclu de both intersection points and g raph ver-
tices. Finally, sh ort edg es not yet encou ntered by the
sweep line m ay create intersections that shou ld be pro-
cessed before intersections created by long edg es that
have already been detected (see Fig u re). P rocessing in
the wrong order m ay introdu ce intersections not in the
g raph or ig nore others, cau sing errors.

E x isting alg orithm s for seg m ent intersection detec-
tion do not work well for the com plete g raph. P la ne

sw eep [3 , 4 ] adds a log N factor to the optim al tim e
com plex ity (yielding O(N 4 log N) tim e and O(N2)
space). The optim al determ inistic alg orithm for the in-
tersection reporting problem [5 , 2] u sing O(n log n+k)
tim e and O(n) space, is dom inated by O(k) = O(N 4)
when applied to a com plete g raph and is hig hly com -
plex to im plem ent. Topologica l sw eep [6, 7 , 9 ] off ers a
log n im provem ent factor over the vertical line sweep on
an arrang em ent of n infi nite lines, bu t does not handle
fi nite line seg m ents.

∗Department o f C ompu ter S c ience, Tu fts U niversity,

M ed fo rd , M A 0 2 1 5 5 . {erafalin, d ls}@ c s.tu fts.ed u
1O n C + + c o d e. E x perimental resu lts verify th e time

and space c omplex ities.

2 A lg o rith m O v e rv ie w
L et G be a planar em bedding of a com plete g raph on N
vertices. Assu m e vertices are in g eneral position. The

com plete g raph contains ex actly n = N(N−1)
2 edg es and

k, the nu m ber of seg m ent intersections, is O(N 4). The
nu m ber of edg es cu t by any sweep line is O(N 2), bu t
can be Θ (N2) with N/2 vertices on each side of the
line and (N

2 )2 edg es crossing it.

We sweep G from left to rig ht to report all intersec-
tion points u sing a topolog ical line (cu t): a m onotonic
line in y-direction, intersecting each of the n edg es a t

most once. The seq u ence of a ctive segments, one per
edg e intersected by the topolog ical line form s the cu t.
A seg m ent of an edg e is delim ited by two adjacent inter-
section points or by the rig htm ost/ leftm ost intersection
point and a vertex .

A sweep beg ins with the leftm ost cu t, which inter-
sects no edg es of the g raph, and proceeds to the rig ht in
a series of elem entary steps u ntil it becom es the rig ht-
m ost cu t. An elem entary step com prises the sweeping
of the topolog ical line past a vertex of the g raph whose
incom ing edg es are all cu rrently intersected by the cu t
or past a rea d y intersection of edg es that are consec-
u tive in the cu rrent cu t. There always ex ists a rea d y

intersection or a rea d y vertex , whose incom ing edg es
already lie on the cu t, u nless the cu t is righ tmost [1 0 ].

To m aintain optim al tim e com plex ity linear in the
size of the arrang em ent and space com plex ity linear in
the m ax im al size of the cu t, we bu ild u pon the con-
cept of h orizon trees [6]. O u r h orizon gra p h s are often
not trees bu t h orizon forests. The u pper (resp. lower)
h orizon forest of the cu t U H F (resp. L H F) is form ed
by ex tending the cu t edg es to the rig ht. When two
edg es intersect, only the one of lower (resp. hig her)
slope continu es to the rig ht. G iven L H F and U H F, the
intersection of the rig ht delim iters of the two forests
produ ces the cu t, which is com pu ted from the u pdated
L H F and U H F in constant tim e per active edg e. A set
of seg m ents along the cu t that contain the sam e inter-
section point as their rig ht endpoint, g enerates a rea d y

intersection, see [9 , 6].
Inte rse ctio n e v ent po ints: The active seg m ents
switch position. To u pdate U H F (resp. L H F) after pro-
cessing the intersection point of seg m ents si, . . . si+k,
for each seg m ents s of the intersection apart from the
fi rst (last) one, traverse the ba y form ed by the seg m ents
above (below) s, u ntil reaching the seg m ent that inter-
sects the ex tension of s (see [1 0 , 6]).

1



Verte x e v e n t po in ts: The sweep processes the ver-
tices of the g raph only when no intersection points are
read y and in a left-to-rig ht ord er, precisely when all the
vertices’ incom ing ed g es are active: In a vertex event
point all of the incom ing active ed g es for vertex v are
d eleted from the set of active seg m ents and all its ou t-
g oing ed g es are inserted . To u pd ate the horizon forests
d elete in-ed g es of v and insert its ou t-ed g es. Then u p-
d ate the horizon forest, walking in cou nterclockwise or-
d er arou nd the bay form ed by the previou s ed g es to fi nd
the intersection point with an active ed g e. The ed g es
em anating from the new vertex to the rig ht, ad d ed to
the set of active ed g es, m ay cu t som e of the ex isting ac-
tive seg m ents, and chang e the horizon forests and the
cu t. To u pd ate the horizon forests, test every ex isting
forest ed g e for intersection with the new seg m ent, in
tim e linear in the size of the cu t.
A m o v in g wa ll: The set of active ed g es d oes not span
the whole arrang em ent. C onseq u ently, the sweep can
encou nter intersection points created by active ed g es
before id entifying interm ed iary ed g es that block them .
For ex am ple, Fig u re (a) contains a g raph of 7 vertices.
The d otted sweep line prod u ces the bold active seg -
m ents. Intersection B of 0 6 and 2 5 is read y to be
processed , as it is the rig ht end point of the active seg -
m ents associated with these ed g es. B, however, can-
not be processed yet, as 0 6 and 2 5 intersect 34 before
point B. Fu rtherm ore, if intersection B is processed ,
0 6 and 2 5 will switch position in the cu t, cau sing 34
to be inserted incorrectly. Intersection points th a t a re

to th e righ t of a ny edge th a t is not yet a ctive ca nnot be

re a d y . Alternatively, consid er intersection A. G iven
the d otted sweep line, both this intersection and vertex
3 are read y to be processed (in vertical sweep vertex
3 wou ld be processed prior to A). H owever, the ord er
of the cu t ed g es cu rrently places the ed g e 1 6 over ed g e
0 5 . If vertex 3 is processed at this tim e, the u pd ate of
the horizon forests and the cu t will be incorrect. All

intersection points th a t a re to th e left of a ll segm ents

em a na ting from vertex v m u st be processed before v is

processed.

0

1

2

3

4

6

B
A

v

A

B

5

D efi ne a m oving w a ll of a position of the sweep line
as the sem i-infi nite lines correspond ing with the two ex -
trem e ed g es em anating to the rig ht from the nex t sweep
vertex vx. The m oving walls for all vertices can be com -
pu ted in O(N log N) tim e u sing [8 ]. At any tim e, the
sweep line has to be forced to the cu rrent position of

the m oving wall (by processing a read y vertex only if it
is to the left of the line d efi ning the wall). Provably, a
read y intersection always ex ists u nless the sweep line is
alig ned with the m oving wall or has reached the rig ht-
m ost cu t. To alig n the sweep line with the cu t ensu re
that no intersection that is insid e the wall is read y and
that read y intersections that aff ect the wall are swept
before the nex t vertex is processed .

There m ay be intersections insid e the m oving wall
associated with vx that can still be lega lly swept (e.g .
intersection B in Fig u re (b)). The sweep line is forced

only to the wall form ed by the two ex trem e seg m ents
em anating to the rig ht from vx and their ex tension to
infi nity instead of inclu d ing all lega l read y intersections,
so intersections that are read y bu t insid e the m oving
wall are d iscard ed (Fig u re (b)). These intersections are
red iscovered when vx is swept, by checking every pair
of ad jacent active seg m ents in the cu t for read y inter-
sections. This step is perform ed once for each vertex ,
with a cost linear in the size of the active set.
Ack n owle d g m e n t The au thors wish to thank Prof.
Ileana S treinu , M ichael A. B u rr and R yan C olem an.
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Dynamic Update of Half-space Depth Contours

M. Burr∗ E. Rafalin∗ D. L. Souvaine∗

Data depth is an approach to statistical analysis based
on the geometry of the data. Half-space depth1 has
been studied most frequently by computational geome-
ters. The half-space depth of a point x relative to a
set of points S = {X1, ..., Xn} in R

d is the minimum
number of points of S lying in any closed half-space de-
termined by a line through x [2, 11]2. Depth contours,
enclosing regions with increasing depth, help to visu-
alize, quantify and compare data sets. Prior work in-
vestigated combinatorial properties and algorithms for
computation of depth contours for static data sets. We
present a dynamic algorithm for computing the two-
dimensional rank-based half-space depth contours of a
set of n points in O(n log n) time per operation and
in O(n2) overall space, an improvement over the static
version of O(n2) time per operation. The same al-
gorithm can compute the half-space depth of a single
point relative to a data set dynamically in O(log n)
time and O(n) space. The algorithm does not com-
pute the entire set of contours explicitly but main-
tains the order (ranking) of points according to their
half-space depth. A constant number of contours (e.g.
10%, · · · 100%) can be constructed in O(n) time from
the sorted list of the data points, ranked by depth.
Our algorithm uses generalized dynamic segment trees

to update the depth of every data point and is based
on key characterizations of the potential changes in the
depth contours upon insertions or deletions3. We only
consider data sets in general position.

1 Preliminaries
The statistics community produced contradictory def-
initions for depth contours. The two main approaches
were termed cover and rank [9]. The cover approach
defines the contour of depth k as the boundary of the
set of points in R

d with depth ≥ k (for half-space depth
1 ≤ k ≤ bn

2 c). The cover-based half-space depth con-
tour is provably the boundary of the intersection of all
closed half-planes containing exactly n − k + 1 data
points whose bounding line passes through two data
points. The rank approach defines the αth central
region as the convex hull containing the most central
fraction of α sample points [5]. The α-central rank-

∗Department of Computer Science, Tufts University, Med-
ford, MA 02155. {mburr,erafalin,dls}@cs.tufts.edu. Partially
supported by NSF grant CCF-0431027

1Also called location depth or Tukey depth.
2For the reminder of the paper, every half-plane is considered

closed unless otherwise mentioned.
3A detailed analysis can be found in [8] where we also present

an O(n log2 n) time and over all O(n2) space algorithm for dy-
namically computing cover-based half-space depth contours.

based half-space-depth contour is constructed by sort-
ing all points of the original set according to their half-
space depth, yielding {X[1], · · ·X[n]}, the ranking order

of the points and taking the convex hull of data points
X[1], · · ·X[α]. Both approaches assign the same depth
value to points that are members of the data set S and
create depth contours that are nested. The main visual
difference: vertices of the rank contours are only data
points while vertices of the cover contours can be any
point from the data set.

Algorithms have existed for some time for construct-
ing depth contours in 2 and higher dimensions under ei-
ther definition. The best 2-D implementation for com-
puting the ranking order of a set of points or all cover-
based depth contours runs in Θ(n2) [6]. Other imple-
mentations (e.g. [10, 3]) compute cover-based contours.

Much prior work exists on dynamic geometric struc-

tures (e.g. [7, 1]). To the best of our knowledge, we
present the first dynamic algorithm for computation of
half-space contours, addressing prior interest [4].

2 The Algorithm
Rank-based contours do not have the appealing proper-
ties of the cover-based contours: e.g. a unique structure
that is relatively easy to update. Our algorithm uti-
lizes the fact that a data point has equal depth values
under the cover and rank approaches, and computes
the rank-based contour by considering the cover-based

contours. Thus, the analysis of our algorithm for the
rank-based contours refers to the complexity of cover-

based contours.
A key idea is, for each data point p, to consider ev-

ery directed line l passing through p and another data
point and the associated closed half-plane Hl to its
right. Hl is represented by the unit vector vHl

associ-
ated with l, see figure (a). For each point p there is
a set of 2(n − 1) unit vectors, that can be thought of
as points on the unit circle, centered at p. Every point
r ∈ S\{p} is assigned to two antipodal vectors, r̂towards

and r̂away (where r̂towards is the vector pointing to-
wards r). When a point q is inserted into or deleted
from the data set, exactly the half-planes with associ-

ated vectors in the semi-circle counter-clockwise from

q̂toward to q̂away have their depth incremented or decre-
mented. These half-planes are updated simultaneously,
to recompute the depth of p efficiently. To do so we use
the concept of defining lines, half-planes and edges. If
p represents a data point of depth k with respect to set
S of n points, p will appear exactly once on the (cover)
contour of depth k. If p is on a non-degenerate contour
it has exactly two incident edges, the defining edges of

3
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p, on the contour of depth k. Every edge on any depth
contour is a sub-segment of a line created by joining
two data points q1, q2 of the set S. The defining lines

l1, l2 for p with respect to S are the lines containing
p’s defining edges. Each defining line li, i ∈ {1, 2}, bi-
sects the plane into two closed half-planes containing
k + 1 and n − k + 1 data points where the half-plane
containing k+1 points does not contain the k-th depth
contour. The defining half-planes Hl1 , Hl2 for p with
respect to S are the closed half-planes bounded by the
defining lines of p which contain k + 1 data points

When point q is inserted into S the cover-based
depth of a point p ∈ S remains unchanged if q is inside
p’s depth contour and can increase only if q is in the
region outside p’s depth contour. The update of every
data point p, when point q is inserted to or deleted from
S, depends on the location of q relative to the defining

lines for p4. Nine cases completely determine how p’s
depth changes and how its two defining lines are trans-

formed5, see figure (b). These updates are computed
in O(log n) time for each data point p: the number of
data points in every half-plane defined by p and each
point in S\p is recomputed; the defining lines of p with
respect to the new data set S ∪q or S \q are found; the
number of data points in the defining half-plane is the
updated depth of p; knowing all half-planes containing
exactly k′ + 1 data points and determined by a line
through p and another data point makes it possible to
determine p’s new defining half-planes as well. (Note
that at least one of the defining half-planes for every
data point remains unchanged after a single insertion
or deletion, see [8]).

Data Structures: For efficiency the algorithm uses
new generalized dynamic segment trees. Each tree rep-
resents the half-planes passing through a data point
p ∈ S and is implemented as an augmented dynamic
red-black tree.

To re-sort data points, we use a linked list of buckets
for depths, from 0 to n/2 (the minimum to maximum
possible), to hold all data points. Bucket k holds a

4The data point to be inserted or deleted lies in one of four
regions or one of the defining lines, yielding nine cases.

5For example, if q is inserted into exactly one defining half-
plane Hl2

, then p’s depth is unchanged, but Hl2
is no longer a

defining half-plane. It can be shown that the vector for p’s new
defining half-plane Hm2

is the first vector found by traversing
the vectors starting from vHl2

towards vHl1
whose associated

half-plane contains k + 1 data points.

linked list of data points of depth k. Upon insertion or
deletion every point q that changes its depth is moved
from its old bucket to a new bucket. Since the depth
of q changes by at most 1, the update takes O(1) time.

3 Open Questions
• The lower bound for computing the half-space

depth rank of data points (and thus their rank
contours) is Ω(n log n), based on reduction to sort-
ing. We are seeking a method to order data points
according to their depth in o(n2).

• To the best of our knowledge, no dynamic algo-
rithm for computing depth contours according to
other depth measures exists. We are working on a
dynamic scheme to compute regression depth con-
tours (envelopes of the arrangement of lines).

• Most real life experiments are high-dimensional.
Since existing static algorithm for computing
depth contours for most data depth measures are
exponential in dimension, dynamic approximation

algorithms for depth contours of multivariate data

are needed.

Acknowledgement: The authors wish to thank S.
Venkatasubramanian, S. Krishnan and R. Liu.
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Abstract

Given a set S = {P1, . . . , Pn} of n points in R2, the simplicial depth σ(Q) of a point Q ∈ R2

is the number of open triangles ∆PiPjPk that contain Q, 1 ≤ i < j < k ≤ n. A point is Q is
“deep” if σ(Q) ≥ maxi σ(Pi). We give a simple, easily implementable O(n(log n)2) deterministic
algorithm to compute a deep point and we can also guarantee that Q has depth at least cn3 for
a constant c > 0.

1 Introduction and Summary

In 1974 John Tukey [11] proposed the now familiar notion of halfspace depth, generalizing from one
dimension the idea of measuring depth by ranks. Since then several other mulitvariate depth measures
have been proposed, e.g., hyperplane depth [10], Oja depth [9] (and also see [5]. Here we address
the notion of simplicial depth proposed by Regina Liu in 1990 [8]. Given a set S = {P1, . . . , Pn} of
n data points in general position in Rd the simplicial depth of a point Q ∈ Rd is defined to be

σ(Q) = |{(i1, . . . , id+1), 1 ≤ i1 < · · · < id+1 ≤ n : Q ∈ ∆Pi1Pi2 · · ·Pid+1
}|, (1)

the number of open simplices whose vertices are points in S and which contain Q. This measure is
affine invariant and robust over samples from a probability distribution.

Even in R2 simplicial depth offers interesting computational and combinatorial challenges. The
simplicial depth of a point Q can be computed in Θ(n log n): once the radial ordering of the Pi about
Q is known, σ(Q) can be obtained in O(n) further steps [5]; the lower bound is due to Aloupis et.al.
[1]. By constructing the arrangement of the lines dual to the Pi, we obtain for each Pi, the radial
order of the other points around it, and therefore can compute the simplicial depth of all points in
S in time O(n2).

We call a point Q ∈ R2 “deep for S” if σ(Q) ≥ maxi σ(Pi), and by the previous observation,
a deep point could be found in time O(n2). A point P ∗ ∈ R2 (not necessarily in S) of maximal
simplicial depth is called a simplicial median.

A max-depth data point (i.e., in S), though “deep” by definition, may actually have low depth
(i.e., 0). However Boros and Füredi [3] showed that there is always a point Q ∈ R2 that is contained
in 2/9 of the triangles determined by the points in S, but that NO point in R2 is in 1/4 + ε of
them. This means that a simplicial median P ∗ satisfies n3/27 ≤ σ(P ∗) ≤ n3/24 + O(n2), a result
generalized to higher dimension by Bárány [4].

It seems to be hard to find a simplicial median. The O(n4) time algorithm of Aloupis et.al. [2]
is currently best. Therefore the following result may be useful and interesting.

∗Research done as a student in the DIMACS Research Experiences for Undergraduates Program at Rutgers
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Theorem 1 Given n points in general position in the plane and ε > 0, let P ∗ denote a simplicial
median and σ∗ its depth. Then a deep point Q having depth at least (1 − ε)σ∗ can be computed in
time O(n(log n)2).

It is easy to find a point Q∗ of the claimed depth, an “approximate median”, and to do so within
the claimed time bounds. The difficulty is to also guarantee that it is “deep”. We do this with a
pruning argument similar to the one used by Langerman and Steiger [7] for the case of hyperplane
depth. A main ingredient is the following

Lemma 1 Given a set S of n points in R2, in time O(n log n) a point Q′ ∈ R2 can be found, along
with its depth δ′, and a “witness halfspace” h that contains at least cn points Pi ∈ S, c > 0, with
δ(Pi) ≤ δ′.

Once we find Q′, points in S ∩ h are pruned, and the Lemma is applied again to the points in
S\(S∩h), giving Q′′. We keep the deeper point. After O(log n) such steps we have Q+, a deep point
for S. If we apply this procedure to S∪Q∗, Q∗ an approximate median, the deep point we get would
satisfy the claims of the Theorem.
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The floodlight illumination problem asks whether there
exists a one-to-one placement of n floodlights illuminat-
ing infinite wedges of angles α1, . . . , αn at n locations
p1, . . . , pn in a plane such that a given infinite wedge W

of angle θ located at point q is completely illuminated by
the floodlights. We prove that this problem is NP-hard,
closing an open problem from CCCG 2001 [2]. In fact, we
show that the problem is NP-complete even when αi = α

for all 1 ≤ i ≤ n (the uniform case) and θ =
∑n

i=0
αi

(the tight case). We discuss various approximate solu-
tions and show that computing any finite approximation
is NP-hard while ε-angle approximations can be obtained
efficiently. Most proofs are omitted in this abstract due to
lack of space. Interested readers are referred to [1].

1 Preliminaries

A generalized wedge is a wedge with a continuous finite
region adjacent to its apex removed. The FLOODLIGHT
ILLUMINATION problem on generalized wedges is as fol-
lows: given n sites p1, . . . , pn, n angles α1, . . . , αn, and
a generalized wedge W , determine whether there is an as-
signment of angles to sites along with angle orientations
that illuminates W . In the tight illumination problem, the
sum of floodlight spans

∑

αi equals the wedge angle. A
different specialization is the uniform problem, where in
addition to being tight, αi = αj for all i, j.

We now look at the related problem of MONOTONE
MATCHING Suppose we are given n lines in the plane,
n + 1 vertical lines defining n finite width vertical slabs,
and two points, one on the leftmost vertical line and one
on the rightmost. Call this an arrangement of lines and
slabs, and denote it by (L, S, λ, ρ), where L is the set
of lines, S ≡ {s1, . . . , sn+1} is the set of vertical lines
x = si forming slabs, and λ and ρ are the two special
points on the lines x = s1 and x = sn+1, respectively.
A monotone matching in (L, S, λ, ρ) is a set of n line
segments, each a portion of a unique line and spanning
a unique slab, such that the following holds: (1) the left

end point of the first segment is above λ, (2) the left end-
point of each subsequent segment is above the right end-
point of the segment in the previous slab, and (3) ρ is
above the right endpoint of the last segment. In the more
general problem of PSEUDOLINE MONOTONE MATCH-
ING, one has to check whether a given arrangement of
pseuodolines1 and slabs admits a monotone matching.

The floodlight illumiination problem can be related to
the monotone matching problem through duality as de-
scribed by Steiger and Streinu [3].

As a tool for our main result, we use NP-completeness
of the problem of finding whether a given directed graph
has a directed disjoint cycle cover.

Theorem 1. DIRECTED DISJOINT CYCLE COVER is NP-
complete, even for graphs with indegree and outdegree
each bounded above by 3, as well as for graphs with out-
degree exactly 3 and indegree at most 4.

2 Floodlight Illumination is NP-Hard

To give a flavor of the proof of our main result, we prove
the following result in this abstract:

Theorem 2. PSEUDOLINE MONOTONE MATCHING is
NP-complete.

The most important gadget is the forcing gadget, shown
in Figure 1. This is a sequence of slabs associated with
pseudolines that forces the line used previous to the gad-
get to end below a chosen point, and the line used after
the gadget to start above another chosen point.

Proof of Theorem 2. As a potential matching can easily
be verified in polynomial time, this problem is in NP. The
proof of NP-hardness is by a reduction from the bounded
degree version of DIRECTED DISJOINT CYCLE COVER
(see Theorem 1).

1A pseudoline is a curve in R
2 that intersects any vertical line in

exactly one point. A collection of pseudolines is a set of pseudolines no
two of which intersect more than once.
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Low sky

High ground
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h
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Must start above here
Must end below here

Figure 1: The forcing gadget. The arrows show how any
lines used before or after the gadget are constrained.

Suppose we are given a directed graph G = (V, E)
with the outdegree of all vertices exactly 3 and the inde-
gree at most 4. We will have gadgets In(v) and Out(u)
for u, v ∈ V as shown in Figure 2. Let I(v) ⊂ E be in
the in-edges of v, and let O(u) ⊂ E be the out-edges of
u. By our choice of G, |I(v)| ≤ 4 and |O(u)| = 3.

}

O(u)I(v)

{

Forced end

Forced start Forced start

Forced end

Figure 2: Graph gadgets In(v) and Out(u).

Let n = |V | and m = |E|. We will use m primary
pseudolines, each corresponding to an edge in E. There
will be a number of auxiliary pseudolines used in forc-
ing gadgets. The Out(·) gadgets and In(·) gadgets will
be arranged in sequence as shown in Figure 3. The pri-
mary pseudoline corresponding to edge (u, v) will first
pass through Out(u), and then pass through In(v).

We claim that when arranged as in Figure 3 along with
appropriate forcing gadgets for each In(·) and Out(·)
gadget, exactly one e ∈ I(vi) is used in In(vi) and ex-
actly one e ∈ O(vi) is not used in Out(vi), 1 ≤ i ≤ n.

A directed disjoint cycle cover of G is equivalent to a
permutation π on the vertices, where π(v) is the predeces-
sor of v in the cycle containing v. If such a permutation
exists, then a monotone matching exists, by not selecting
the edge at Out(u) corresponding to π−1(u), and select-
ing the edge corresponding to π(v) at In(v). Conversely,
if a monotone matching exists, then the permutation π can
be recovered by setting π(v) equal to the edge that is used
in In(v). This completes the reduction.

The proof of NP-hardness of MONOTONE MATCH-

SKY

GROUND

In(v1)

In(v2)

In(v
n
)

. . .

. . .

Out(v1)

Out(v2)

Out(v
n
)

Figure 3: Overall view of the reduction from DIRECTED
DISJOINT CYCLE COVER.

ING with straight lines is based on the same idea but is
somewhat more involved. The details can be found in [1].
From the duality between monotone matching and flood-
light illumination, we have

Theorem 3. FLOODLIGHT ILLUMINATION is NP-hard.
The tight, restricted, and uniform versions of the problem
are NP-complete.

3 Approximate Illumination

We now look at approximation algorithms to solve the
floodlight illumination problem in the tight case. Let F be
an illumination of a wedge W . F is a finite-approximation
if it illuminates W \ S, where S is a finite region. F is an
ε angle-approximation if it illuminates W \ Sε, where Sε

is a union of wedges whose total angle is at most ε. We
have the following result:

Theorem 4. For the tight floodlight illumination problem,
computing a finite-approximation is NP-hard, where as
for any ε an ε angle-approximation can be found in poly-
nomial time.
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Self-reconfiguring Robots

Daniela Rus

Computer Science and Artificial Intelligence Lab

MIT

We wish to create versatile robots by using self-reconfiguration: hundreds

of small modules autonomously organize and reorganize as geometric struc-

tures to best fit the terrain on which the robot has to move, the shape of the

object the robot has to manipulate, or the sensing needs for the given task.

Self-reconfiguration allows large collections of small robots to actively orga-

nize as the most optimal geometric structure to perform useful coordinated

work.

A self-reconfiguring robot consists of a set of identical modules that can

dynamically and autonomously reconfigure in a variety of shapes, to best

fit the terrain, environment, and task. Self-reconfiguration leads to versatile

robots that can support multiple modalities of locomotion and manipulation.

Self-reconfiguring robots constitute large scale distributed systems. Because

the modules change their location continuously they also constitute ad-hoc

networks.

This talk will discuss the geometric challenges of creating self-reconfiguring

robots, ranging from designing hardware capable of self-reconfiguration to

developing distributed controllers and planners for such systems that are

scalable, adaptive, and support real-time behavior.
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Unfolding S m ooth P rim sa toids

abstrac t

Nadia B enbernou ∗ Patricia C ahn† J oseph O ’R ou rke‡

Abstract

We defi ne a notion for u nfolding smooth, ru led su r-
faces, and prove that every smooth prismatoid (the con-
vex hu ll of two smooth cu rves lying in parallel planes),
has a nonoverlapping “ volcano u nfolding .” These u n-
folding s keep the base intact, u nfold the sides ou tward,
splayed arou nd the base, and attach the top to the tip of
some side rib. O u r resu lt answers a q u estion for smooth
prismatoids whose analog for polyhedral prismatoids re-
mains u nsolved.

In tro d u ctio n . It is a long -u nsolved problem to deter-
mine whether or not every convex polyhedron can be cu t
along its edg es and u nfolded fl at into the plane to a sin-
g le nonoverlapping simple polyg on (see, e.g ., [O ’R 0 0 ]),
the net. These u nfolding s are known as ed ge u nfo ld ings

becau se the su rface cu ts are along edg es. In this pa-
per,1 we g eneralize edg e u nfolding s to certain piecewise-
smooth ru led su rfaces,and show that smooth prisma-
toids can always be u nfolded withou t overlap. O u r hope
is that the smooth case will inform the polyhedral case.

P y ram id s an d C o n e s. A p ry a m id is a polyhedron that
is the convex hu ll of a convex ba se polyg on B and an
a pex v above the plane containing the base. The sid e

fa ces are all triang les. It is trivial to u nfold a pyramid
withou t overlap: cu t all side edg es and no base edg e.
This produ ces what mig ht be called a vo lca no u nfolding .
E x amples are shown in Fig . 1 (a,b) for reg u lar polyg on
bases.

We g eneralize pyramids to co nes : shapes that are the
convex hu ll of a smooth convex cu rve base B lying in the
x y -plane, and a point apex v above the plane. We defi ne
the volcano u nfolding of a cone to be the natu ral lim-
iting shape as the nu mber of vertices of base polyg onal
approx imations g oes to infi nity, and each side triang le
approaches a seg ment rib. This limiting process is illu s-
trated in Fig . 1 (c). For any point b ∈ ∂B, the seg ment
vb is u nfolded across the tang ent to B at b. Note that

∗Department o f M ath ematic s nbenbern@email.smith.edu.
†Department o f M ath ematic s pcahn@email.smith.edu.
‡Department o f C ompu ter S c ience, S mith C o lleg e, N o rth amp-

to n, M A 0 1 0 6 3 , U S A . orourke@cs.smith.edu. S u ppo rted by N S F

Disting u ish ed Teach ing S ch o lars award DU E -0 1 2 3 1 5 4 .
1S ee http://arxiv.org/abs/cs/0407063 fo r th e fu ll versio n.

Fig u re 1 : U nfolding s of reg u lar pyramids (a-b) ap-
proaching the u nfolding of a cone (c).

this net for a cone is no long er an u nfolding that cou ld
be produ ced by paper, becau se the area increases.

M ain R e su lt. O u r main resu lt concerns a shape known
as a p rism a to id , the convex hu ll of two convex polyg ons
A and B lying in parallel planes. There is no alg orithm
for edg e-u nfolding prismatoids. O u r concentration in
this paper is on sm oo th p rism a to id s, which we defi ne as
the convex hu ll of two smooth convex cu rves A above
and B below, lying in parallel planes. A volcano u n-
folding of a smooth prismatoid u nfolds every rib seg -
ment ab of the convex hu ll, a ∈ ∂A and b ∈ ∂B, across
the tang ent to B at b, into the x y -plane, su rrou nding
the base B, with the top A attached to one appropri-
ately chosen rib. The main resu lt of this paper is that
every smooth prismatoid has a nonoverlapping volcano
u nfolding . Fig . 2 illu strates the side u nfolding of a pris-
matoid; the top A mu st be carefu lly placed tang ent to
the side u nfolding and on the convex hu ll of that u n-
folding .
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Figure 2 : T w o v iew s of th e sid e un fold in g of a 3 D p rism atoid . T h e top A is an ellip se in a p lan e p arallel to th e b ase.
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Folding Paper Shopping Bags

Devin. J. Balkcom∗ Erik D. Demaine†

Martin L. Demaine†

1 Introduction. In grocery stores around the
world, people fold and unfold countless paper bags
every day. The rectangular-bottomed paper bags
that we know today are manufactured in their 3D
shape, then folded flat for shipping and storage, and
later unfolded for use. This process was revolu-
tionized by Margaret Knight (1838–1914), who de-
signed a machine in 1867 for automatically gluing
and folding rectangular-bottomed paper bags [8].
Before then, paper bags were cut, glued, and folded
by hand. Knight’s machine effectively demolished
the working-class profession of “paper folder”.

Our work questions whether paper bags can be
truly (mathematically) folded and unfolded in the
way that happens many times daily in reality. More
precisely, we consider foldings that use a finite num-
ber of creases, between which the paper must stay
rigid and flat, as if the paper were made of plastic or
metal plates connected by hinges. Such foldings are
sometimes called rigid origami, being more restrictive
than general origami foldings, which allow continu-
ous bending and curving of the paper and thus effec-
tively uncountably infinite “creasing”. It is known
that essentially everything can be folded by a con-
tinuous origami folding [6], but that this is not the
case for rigid origami.

We prove that the rectangular-bottomed paper
bag cannot be folded flat or unfolded from its flat
state using the usual set of creases that are so com-
mon in reality—in fact, the bag cannot move at all
from either its folded or unfolded state. However,
we show that a different creasing of a paper bag en-
ables it to fold flat from its 3D state. We also con-
jecture a way to unfold a paper bag from its flat
state if it was already folded using the usual set of
creases (by an adversary equipped with techniques
from origami or reality).

2 Related Work. In the mathematical literature,
the closest work to rigid folding is rigidity. The fa-
mous Bellows Theorem of Connelly, Sabitov, and
Walz [4] says that any polyhedral piece of paper
forming a closed surface preserves its volume when
folded according to a finite number of creases. In

∗Dartmouth Computer Science Department, Pittsburgh, PA
15213, devin@cs.dartmouth.edu

†MIT Computer Science and Artificial Intelligence Labora-
tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,
mdemaine}@mit.edu
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Figure 1: A shopping bag with creases in the usual places.

contrast, as suggested by the existence of bellows
in the real world, it is possible to change the vol-
ume using origami folding. Even more fundamen-
tal are Cauchy’s rigidity theorem, Aleksandrov’s ex-
tension, and Connelly’s extension [2], which all es-
tablish an inability to fold a convex polyhedron us-
ing a finite number of creases. (In Cauchy’s case,
the creases must be precisely the edges of the poly-
hedron; in Connelly’s case, any finite set of addi-
tional creases can be placed; Aleksandrov’s theorem
is somewhere in between.) Another result of Con-
nelly1 is that a positive-curvature “corner” (the cycle
of facets surrounding a vertex in a convex polyhe-
dron) cannot be turned “inside-out” no matter how
we place finitely many additional creases; this result
answers a problem of Gardner [7]. In contrast, a pa-
per bag can be turned inside-out with an origami
folding (and in real life) [3].

Few papers discuss rigid origami directly. De-
maine and Demaine [5] present a family of origami
“bases” that can be folded rigidly. Streinu and
Whiteley [9] proved that any single-vertex crease
pattern can be folded rigidly—up to but not in-
cluded the moment at which multiple layers of pa-
per coincide. Balkcom and Mason [1] demonstrate
how some classes of origami can be rigidly folded
by a robot.

3 Main Results. Figure 1 shows a shopping bag
with the usual crease pattern, and dimensions w, l,
and h. For the bag shown, h > w/2, and l > w.

Our first main result states that a shopping bag
cannot be folded at all with just the usual creases:

Theorem 1 A shopping bag with the usual crease pat-
tern has a configuration space consisting of two isolated
points, corresponding to the fully-open and fully-closed
configurations.

1Personal communication, 1998.
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The results described in the previous section have
two immediate consequences if we allow finitely
many additional creases. First, the Bellows Theorem
implies that, if the shopping bag had a top, no finite
number of additional creases would allow the vol-
ume of the bag to be changed. Second, because the
corners of the bag are convex, no finite number of
additional creases would allow the shopping bag to
be turned inside-out.

Figure 2: A short
paper bag, similar
to a collapsible
department-store
gift box.

Based on these consequences,
it might seem that no finite set
of additional creases would al-
low a shopping bag to be folded
flat. Our second result shows the
opposite. A short shopping bag,
with h ≤ w/2, cannot have the
usual shopping bag crease pat-
tern, because the 45◦ creases do
not intersect on the interior of the
left and right sides of the bag; see
Figure 2. In this case, we show

Theorem 2 Every short shopping bag (with h ≤ w/2)
can be collapsed flat using the creases in Figure 2.

Now Theorem 2 suggests a method for folding a
tall shopping bag: add creases to allow the tall bag
to be telescoped until it is short enough to collapse
flat. Figure 3 shows an animation of our procedure
for shortening a bag by reducing h up to min{w, l}.
Using a sequence of these operations, we show

Theorem 3 A tall shopping bag can be collapsed flat
with the addition of finitely many creases.

Figure 4: Conjec-
tured creases for
unfolding an al-
ready folded pa-
per bag.

The collapsed state of the shop-
ping bag after applying the fold-
ing technique described in the
proof of theorem 3 is not the
same as the collapsed state of
the shopping bag with no ad-
ditional creases. This difference
suggests a more difficult ques-
tion: can a collapsed shopping
bag be opened up with the ad-
dition of a finite set of creases?
We conjecture that it can, and pro-
pose a possible crease pattern in
Figure 4.

Conjecture 1 A collapsed tall shopping bag can be un-
folded with the addtion of a finite number of creases.

If true, this conjecture would also offer a simpler
way to flatten a tall shopping bag.

Figure 3: Procedure for shortening a rectangular tube.
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Hinged Dissection of Polypolyhedra
Erik D. Demaine∗ Martin L. Demaine∗

Jeffrey F. Lindy† Diane L. Souvaine‡

1 Introduction. A dissection of two figures (solid
2D or 3D shapes, e.g., polygons or polyhedra) is a way
to cut the first figure into finitely many (compact) pieces
and to rigidly move those pieces to form the second fig-
ure. It is well-known that any two polygons of the same
area have a dissection, but not every two polyhedra of the
same volume have a dissection [3, 5].

Figure 1: Hinged dissec-
tion of square and equilat-
eral triangle, described by Du-
deney [5].

A hinged dissection of
two figures is a dissection in
which the pieces are hinged
together at points (in 2D
or 3D) or along edges (in
3D), and there is a mo-
tion between the two figures
that adheres to the hinging,
keeping the hinge connec-
tions between pieces intact.
While a few hinged dissec-
tions such as the one in Fig-
ure 1 are quite old (1902), hinged dissections have re-
ceived most of their study in the last few years; see [6, 4].
It remains open whether every two polygons of the same
area have a hinged dissection, or whether every two poly-
hedra that have a dissection also have a hinged dissection.

Figure 2: Two polycubes of
order 8, which have a 24-
piece edge-hinged dissection
by our results.

2 Results. In this pa-
per we develop a broad fam-
ily of 3D hinged dissec-
tions for a class of poly-
hedra called polypolyhedra.
For a polyhedron P with
labeled faces, a polypoly-
hedron of type P is an
interior-connected non-self-
intersecting solid formed by
joining several rigid copies
of P wholly along identically labeled faces. (Such join-
ings are possible only for reflectionally symmetric faces.)
Figure 2 shows two polycubes (where P is a cube).

For every polyhedron P and positive integer n, we de-
velop one hinged dissection that folds into all (exponen-
tially many) n-polyhedra of type P . The number of pieces
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in the hinged dissection is linear in n and the combinato-
rial complexity of P . For polyplatonics, we give partic-
ularly efficient hinged dissections, tuning the number of
pieces to the minimum possible among a natural class of
“regular” hinged dissections of polypolyhedra. For poly-
parallelepipeds (where P is any fixed parallelepiped), we
give hinged dissections in which every piece is a scaled
copy of P . All of our hinged dissections are hinged along
edges and form a cyclic chain of pieces, which can be bro-
ken into a linear chain of pieces.

Our results generalize analogous results about hinged
dissections of “polyforms” in 2D [4].

Like most previous theoretical work in hinged dissec-
tions, we do not know whether our hinged dissections can
be folded from one configuration to another without self-
intersection. However, we prove the existence of such mo-
tions for the most complicated gadget, the twister.

3 Proof Overview. Our construction of a hinged dis-
section of all n-polyhedra of type P divides into two parts.
First, we find a suitable hinged dissection of the base poly-
hedron P . The exact constraints on this dissection vary,
but two necessary properties are that the hinged dissec-
tion must be (1) cyclic, forming a closed chain of pieces,
and (2) exposed in the sense that, for every face of P , there
is a hinge in H that lies on the face (either interior to the
face or on its boundary). For platonic solids, these hinges
will be edges of the polyhedron; in the general case, we
place these hinges along faces’ lines of reflectional sym-
metry. Second, we repeat n copies of this hinged dissec-
tion of P , spliced together into one long closed chain. Fi-
nally, we prove that this new hinged dissection can fold
into all n-polyhedra of type P , by induction on n.

3.1 Platonic Solids. Figure 3 shows an exposed
cyclic hinged dissection of each of the platonic solids.
Basically, each piece comes from carving the k-sided pla-
tonic solid into k face-based pyramids with the platonic
solid’s centroid as the apex. As drawn, these hinged dis-
sections consist of k pieces, but by merging consecutive
pairs of pieces along their common face, the number of
pieces can be reduced to k/2 pieces while maintaining ex-
posed hinges. These exposed hinged dissections have the
fewest possible pieces, subject to the exposure constraint,
because a hinge can simultaneously satisfy at most two
faces of the original polyhedron.

3.2 General Case. In the general case, we use a 3D
generalization of the straight skeleton [1] to decompose
a given polyhedron into a collection of cells, exactly one
cell per facet, such that exactly one cell is incident to each
facet. These cells form the pieces in an exposed hinged
dissection. For these pieces can be connected together
into a cyclic hinged dissection, we need to first arrange
for the polyhedron P to have a Hamiltonian dual graph.

In fact, we make two main modifications to P ’s sur-
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Figure 3: Unfolded exposed cyclic hinged dissections of the
platonic solids. The bold lines indicate a pair of edges that are
joined by a hinge but have been separated in this figure to permit
unfolding. The dashed lines denote all other hinges between
pieces. In the unfolding, the bases of all of the pyramid pieces
lie on a plane, and the apexes lie above that plane (closer to the
viewer).

face. First, we divide each reflectionally symmetric face
of P along one of its lines of symmetry, producing a poly-
hedron P ′. Second, we divide each face of P ′ so that

Figure 4: Hamiltonian refine-
ment of five faces in a hypo-
thetical polyhedron.

any spanning tree of the
faces in P ′ translates into
a Hamiltonian cycle in the
resulting polyhedron P ′′.
This reduction is similar to
the Hamiltonian triangula-
tion result of [2] as well as
a refinement for hinged dis-
section of 2D polyforms [4,
Section 6]. We conceptu-
ally triangulate each face f
of P ′ using chords (though
we do not cut along the edges of that triangulation). Then,
for each triangle, we cut from an arbitrarily chosen inte-
rior point to the midpoints of the three edges. Figure 4
shows an example. For any spanning tree of the faces
of P ′, we can walk around the tree (follow an Eulerian
tour) and produce a Hamiltonian cycle on the faces of P ′′.

In particular, we can start from the matching on the
faces of P ′ from the reflectionally symmetric pairing, and
choose a spanning tree on the faces of P ′ that contains
this matching. Then the resulting Hamiltonian cycle in
P ′′ crosses a subdivided edge of every line of symme-
try. (In fact, the Hamiltonian cycle crosses every subdi-
vided edge of every line of symmetry.) Thus, in the ex-
posed cyclic hinged dissection of the Hamiltonian poly-
hedron P ′′, there is an exposed hinge along every line of
symmetry. Therefore all joinings between copies of P ′′

can use these hinges.
3.3 Putting Pieces Together. We use induction to

prove that the nth repetition of the exposed cyclic hinged
dissection of P described above can fold into any n-
polyhedron of type P . The base case of n = 1 is trivial.

Given an n-polyhedron Q of type P , one copy P1 of P
can be removed to produce an (n−1)-polyhedron Q′. By
induction, the (n − 1)st repetition of the exposed hinged
dissection can fold into Q′. Also, P1 itself can be decom-
posed into an instance of the exposed hinged dissection.
Our goal is to merge these two hinged dissections. Essen-
tially, we show that the hinged dissections can be placed
against the shared face between P1 and Q′ in such a way
that (1) a hinge of the exposed hinged dissection of P1

coincides with a hinge of the hinged dissection of Q′, and
(2) the four pieces involved in these two hinges can be re-
hinged so that all pieces are connected in a single cycle,
and that cycle is exactly the nth repetition of the exposed
hinged dissection of P .

3.4 Mutually Rotated Base Polyhedra: Twisters.
If a face is k-fold symmetric for k ≥ 3, then there are
several ways to glue two copies of P along this face.
These different gluings produce different polypolyhedra
if P itself is not k-fold symmetric. However, only one
of the gluings can be produced by the inductive argument
described above, because only one relative rotation will
align the hinges that lie along the one chosen line of sym-
metry.
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Figure 5: This 32-piece
twister gadget allows turns of
one-quarter of a twist. Al-
though the pieces look two
dimensional, they have thick-
ness (they are prisms). The
gaps between pieces 8 and 9
in subfigure (a) and between
the top and bottom layers are
for visual clarity only; in fact,
the two layers are flush. Solid
segments denote lengthwise
hinges on the “inside” layer;
dashed segments denote tiny
hinges on the perimeter.

To enable these kinds
of joinings, we embed the
twister gadget shown in
Figure 5 beneath each face
of P ′′ that has k-fold sym-
metry for k ≥ 3. This
gadget consists of 8k cycli-
cally hinged pieces that al-
low any integer multiple of
1/k rotation of one set of
pieces with respect to the
other pieces.
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A 2 -c h ain C an In te rlo c k w ith a k-c h ain

abstrac t

Julie G lass∗ S tefan L ang erm an† Joseph O ’R ourke‡ Jack S noeyink§ Jianyuan K . Z hong ¶

Abstract

O ne of the open problem s posed in [3] is: what is the
m inim al num ber k such that an open, fl ex ible k-chain
can interlock with a fl ex ible 2 -chain? In this paper,
we establish the assum ption behind this problem , that
there is ind eed som e k that achieves interlocking . We
prove that a fl ex ible 2 -chain can interlock with a fl ex ible,
open 16-chain.

1 In tro d u ctio n

A po ly go n a l ch a in (or just ch a in ) is a linkag e of rig id
bars (line seg m ents, ed g es) connected at their end points
(joints, vertices), which form s a sim ple path (an o pen

ch a in ) or a sim ple cycle (a clo sed ch a in ). A fo ldin g of
a chain is any reconfi g uration obtained by m oving the
vertices so that the leng ths of ed g es are preserved and
the ed g es d o not intersect or pass throug h one another.
T he vertices act as universal joints, so these are fl ex ible

ch a in s. If a collection of chains cannot be separated by
fold ing s, the chains are said to be in terlocked.

Interlocking of polyg onal chains was stud ied in [4 , 3],
establishing a num ber of results reg ard ing which col-
lection of chains can and cannot interlock. O ne of the
open problem s posed in [3] asked for the m inim al k such
that a fl ex ible open k-chain can interlock with a fl ex ible
2 -chain. An unm entioned assum ption behind this open
problem is that there is som e k that achieves interlock-
ing . It is this q uestion we ad d ress here, showing that
k = 16 suffi ces.

It was conjectured in [3] that the m inim al k satisfi es
6 ≤ k ≤ 11. T his conjecture was based on a construc-
tion of an 11-chain that likely d oes interlock with a 2 -
chain. We em ploy som e id eas from this construction in
the ex am ple d escribed here, but for a 16-chain. O ur
m ain contribution is a proof that k = 16 suffi ces. It
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appears that using m ore bars m akes it easier to obtain
a form al proof of interlocked ness.1

R esults from [3] includ e:

1. T wo open 3-chains cannot interlock.

2 . N o collection of 2 -chains can interlock.

3. A fl ex ible open 3-chain can interlock with a fl ex ible
open 4 -chain.

T his third result is crucial to the construction we
present, which establishes our m ain theorem , that a 2 -
chain can interlock a 16-chain (T heorem 1 below.)

2 Id e a o f P ro o f

We fi rst sketch the m ain id ea of the proof. If we could
build a rig id trapezoid with sm all ring s at its four ver-
tices (T1, T2, T3, T4), this could interlock with a 2 -chain,
as illustrated in Fig ure 1(a). For then pulling vertex v

of the 2 -chain away from the trapezoid would necessar-
ily d im inish the half apex ang le α, and pushing v d own
toward the trapezoid would increase α. B ut the only
slack provid ed for α is that d eterm ined by the d iam eter
of the ring s. We m ake as our subg oal, then, build ing
such a trapezoid .

α

(c)(a)

v

b

a

b'

a'

(b)

5
1

4
1

T1

T3
T4

T2

wu

Fig ure 1: (a) A rig id trapezoid with ring s would inter-
lock with a 2 -chain; (b) An open chain that sim ulates a
rig id trapezoid ; (b) Fix ing a crossing of a a ′ with b b ′.

We can construct a trapezoid with four links, and
rig id ify it with two crossing d iag onal links. In fact, only

1S ee http://arxiv.org/abs/cs.CG/0410052 fo r th e fu ll paper.
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one d iag onal is necessary to rig id ify a trapezoid in the
plane, bu t clearly a sing le d iag onal leaves the freed om
to fold along that d iag onal in 3D . This freed om will be
rem oved by the interlocked 2 -chain, however, so a sing le
d iag onal su ffi ces. To create this rig id ifi ed trapezoid with
a sing le open chain, we need to em ploy 5 links, as shown
in F ig u re 1(b). B u t this will only be rig id if the links
that m eet at the two vertices incid ent to the d iag onal
are tru ly “ pinned ” there. In g eneral we want to take one
su bchain aa′ and pin its crossing with another su bchain
b b ′ to som e sm all reg ion of space. S ee F ig u re 1(c) for
the id ea.

This pinning can be achieved by the “ 3/4-tang le” in-
terlocking from [3], resu lt (3) above; see F ig u re 2 .

C
y

x
B D

E
w

A

z

F ig u re 2 : F ig . 6 from [3].

S o the id ea is replace the two critical crossing s with
a sm all copy of this confi g u ration. This can be accom -
plished with 7 links per 3/4-tang le, bu t sharing with the
incid ent incom ing and ou tg oing trapezoid links poten-
tially red u ces the nu m ber of links need ed per tang le. We
have achieved 5 links at one tang le and 4 at the other.
The other two vertices of the trapezoid need to sim u late
the ring s in F ig u re 1(a), and this can be accom plished
with one ex tra link per vertex . Tog ether with the 5
links for the m ain trapezoid skeleton, we em ploy a total
of 5 + (5 + 4 + 1 + 1) = 16 links.

The fi nal constru ction, shown in F ig u re 3, establishes
ou r m ain resu lt:

Theorem 1 The 2 -lin k cha in is in terlocked w ith the 1 6 -

lin k tra pezo id cha in .

3 D isc u ssio n

We d o not believe that k = 16 is m inim al. We have
d esig ned two d iff erent 11-chains both of which appear
to interlock with a 2 -chain. H owever, both are based
on a triang u lar skeleton rather than on a trapezoid al
skeleton, and place the apex v of the 2 -chain close to
the 11-chain. It seem s it will req u ire a d iff erent proof
techniq u e to establish interlocking , for the sim plicity of
the proof presented here relies on the vertices of the
2 -chain rem aining far from the entang ling chain.

A nother d irection to ex plore is closed chains, for
which it is reasonable to ex pect fewer links. R eplac-

T
1

T
3

T
4

T
2

F ig u re 3: A n open 16-chain form ing a nearly rig id trape-
zoid , interlocked with a 2 -chain (red ).

ing the 3/4-tang les with “ knitting need les” confi g u ra-
tions [2 ][1] prod u ces a closed chain that appears inter-
locked , bu t we have not d eterm ined the m inim u m nu m -
ber of links that can achieve this.

A c k n o w le d g e m e n ts

We th a n k E rik D em a in e fo r d isc u ssio n s th ro u g h o u t th is
wo rk , th e p a rtic ip a n ts o f th e D IM AC S R ec o n n ec t Wo rk -
sh o p h eld a t S t. M a ry ’s C o lleg e in J u ly 2 0 0 4 fo r h elp fu l
d isc u ssio n s, a n d G illia n B ru n et a n d M eg h a n Irv in g fo r p h y s-
ic a l m o d el c o n stru c tio n : http://cs.smith.edu/~orourke/

Interlocked/Linkage.Model.html.

R e fe re n c e s

[1 ] T. B ied l, E . D em a in e, M . D em a in e, S . L a z a rd , A. L u -
b iw, J . O ’R o u rk e, M . O v erm a rs, S . R o b b in s, I. S trein u ,
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of poly gon a l in terva ls a n d u n kn ots in 3-spa ce, J o u rn a l
o f K n o t th eo ry a n d Its R a m ifi c a tio n s, 7 (8 ): 1 0 2 7 – 1 0 39 ,
1 9 9 8 .

[3] E . D . D em a in e, S . L a n g erm a n , J . O ’R o u rk e, a n d
J . S n o ey in k , In terlocked O pen Lin ka ges with Few

J oin ts, P ro c . 1 8 th AC M S y m p o s. C o m p u t. G eo m ., 1 8 9 –
1 9 8 , 2 0 0 2 .

[4 ] E . D . D em a in e, S . L a n g erm a n , J . O ’R o u rk e, a n d
J . S n o ey in k , In terlocked open a n d closed lin ka ges with

few join ts, C o m p . G eo m . Th eo ry Ap p l., 2 6 (1 ): 37 – 4 5 ,
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A Theorem of Tutte and 3D Mesh Parameterization 
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Parameterization of 3D manifold mesh data involves embedding the mesh in some natural 
parametric domain, such as the plane or the sphere. Parameterization is important for many 
applications in geometry processing, including texture mapping, remeshing and morphing. The 
main objective is to generate a bijective mapping between the mesh surface and the parametric 
domain, which minimizes the distortion incurred in the transition in some meaningful sense. 
Examples of possible distortion are metric (edge length) distortion, conformal (angular) distortion 
and authalic (area) distortion. 

A classical theorem of Tutte [7], originally designed to draw planar graphs, shows how to embed 
a manifold graph with the topology of a disk in the plane. This is achieved by fixing its boundary 
to a convex shape, and then solving a set of linear equations for the positions of the interior 
vertices. These equations express the fact that every interior vertex is positioned at the centroid of 
its neighbors. This basic method was later generalized by Floater [2] to arbitrary convex 
combinations, and Tutte’s method could then be used to embed a 3D mesh in the plane, 
controlling the distortion by using convex weights derived from the geometry of the mesh. This 
class of embeddings are harmonic solutions of a discrete Laplace equation, namely requiring the 
weighted graph Laplacian operator to vanish at all interior vertices, with convex boundary 
conditions.

While Tutte’s basic method remains a popular parameterization method, the constraint of a 
convex boundary is very severe, in most cases introducing unnecessary distortion into the result. 
Beyond that, it does not provide a satisfactory method to parameterize closed genus-0 meshes and 
meshes with higher genus. In this talk I will briefly survey some recent work of mine with 
colleagues on various generalizations of Tutte’s method which overcome these problems. 

Gortler, Gotsman and Thurston [3] provided conditions under which Tutte’s method produces 
bijective embeddings even when the boundary is non-convex. This was used by Karni, Gotsman 
and Gortler [5] to generate free-boundary planar embeddings with constraints. 

Gotsman, Gu and Sheffer [4] showed how to generalize the theory of Tutte to embed a closed 
genus-0 mesh on the sphere. This relies on recent algebraic characterizations of convex 
embeddings due to Colin de Verdiere [1], and related eigenvector constructions due to Lovasz 
and Schrijver [6]. In practice it involves solving a set of quadratic equations. 

Inspired by recent work on discrete vector calculus, Gortler, Gotsman and Thurston [3] showed 
how the concept of a one-form from differential geometry can be defined on a discrete mesh. 
When such a one-form is harmonic, is may be used to generate bijective embeddings in the plane, 
in analogy to the Tutte method. The theory culminates in a discrete version of the Hopf-Poincare 
Index theorem, which may be used to provide a simple proof of the Tutte theorem, Moreover, it 
shows very simply (using a mere counting argument) how to generate a doubly-periodic 
embedding of the torus in the plane. 
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Given two points a and b in the plane, draw n equally-
spaced curves, C1 � C2 ��������� Cn between them. More for-
mally, those curves must satisfy the equi-distant prop-
erty: for any point p on any such curve C i � 1 � i � n
the two adjacent curves Ci  1 and Ci ! 1 are equally dis-
tant, that is, d " p � Ci  1 #%$ d " p � Ci ! 1 # , where d " p � C # is
the distance from p to the point on a curve C that is
closest to p. We define C0 $ a and Cn ! 1 $ b as de-
generate curves. So, we have d " p � C0 #%$ d " p � a # and
d " p � Cn ! 1 #�$ d " p � b # .

This problem is related to wire routing in printed cir-
cuit boards. In a new production technology more than
one wires can be put between two pins. Then, it is de-
sired to draw those wires so that they are equally spaced
due to electrical constraints.

It is easy to draw one curve (line) between two points.
It is simply a perpendicular bisector of the two points. It
is also rather easy to draw three equally-spaced curves.
The middle one is the perpendicular bisector of the two
points and the remaining two curves are parabolas, each
of which is a curve equidistant from a point and a line.

The case n $ 2 is not easy. In this short paper we
prove that we can draw two such equally spaced curves
although we have no analytic equations for the curves.
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For simplicity but without loss of generality we fix the
two points a and b: a $ " 3 � 0# and b $ "�< 3 � 0 # . We
denote the two curves by Ca and Cb, which are charac-
terized as follows:
(1) For any point p on Ca, d " p � a#=$ d " p � Cb # , and
(2) for any point p on Cb, d " p � b #>$ d " p � Ca # .

The curves Ca and Cb must pass through the
points " 1 � 0 # and "?< 1 � 0 # , respectively, and the distance
d " p � Ca # , for example, is given as the length of a line
segment directed from p perpendicularly to the curve
Ca.

Now, take any point p on Ca. Then, we have d " p � a #�$
d " p � Cb # It implies that the circle centered at p with the
point a on it must be tangent to the curve Cb at a unique
point, which is denoted by q p. The point qp on Cb is
called an image of the point p on Ca.

Fig. 1 shows this tangential property.

ab

p

qp

CaCb

Figure 1: Tangential property.

By this tangential property we can guess a rough
shapes of Ca and Cb, that is, they are smooth and convex
toward the origin since they are envelopes of circles. As
a point p goes to infinity along the curve Ca, the radius
of its associated circle approaches to infinity, and finally
it converges to a line.

@ �A��(;BC�D�*EF798���:2�;)

The properties described above suggest equations spec-
ifying the curves Ca and Cb, but it seems to be hard to
obtain analytic representations of the curves. Our strat-
egy here is to compute rough shapes of the curves. For
that purpose, we partition the plane into small squares
of side length ε and remove all squares that cannot in-
tersect the curves (see Fig. 2 for illustration). Due to the
symmetry of the curves Ca and Cb, we only consider Ca.

Given a value of ε G 0, the plane is partitioned
into squares. Each such square is specified by two-
dimensional indices, as

si H j $JI iε � " i K 1# ε L	M I jε � " j K 1 # ε L � (1)

We start with finding a square s0 H j which contains the
point " 1 � 0 # , the intersection of the curve Ca with the x-
axis, and then remove all other squares with i $ 0. At
i $ 1, we take squares near the square s0 H j containing
" 1 � 0 # and check their feasibility.

Feasible squares are defined as follow:
(1) The square containing the point " 1 � 0 # is feasible.
(2) A square si H j is feasible if there exists a feasible
square si NDH j N such that

(i) i O;P i,
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a

dmax(si,j,si′,j′)

dmin (si,j,si′,j′)

si′,j′

si,j

dmin (si,j,a)

Figure 2: Feasible squares with related distances.

Figure 3: Two curves drawn by our approximation algo-
rithm.

(ii) � dmin � si � j � a � � dmax � si � j � a �����	� dmin � si � j � si 
�� � j 
 � �
dmax � si � j � si 

� � j 
 ������ /0, and

(iii) there exists no square si” � j” such that
dmax � si � j � si” � � j” ��� dmin � si � j � a � ,

where note that if a square si � j on the curve Ca is feasible
then the square si � � j is a feasible square on the curve Cb.
dmin � si � j � a � and dmax � si � j � a � are the minimum and max-
imum distances between the square si � j and the point a,
and dmin � s � s ��� and dmax � s � s ��� are the minimum and max-
imum distances between two squares s and s � .

Once we have feasible squares si � j � si � j � 1 ��������� si � k for i,
a set of feasible squares for i � 1 should start somewhere
around j and end somewhere near k on i � 1. Fig. 3
shows our implementation result.

� ��� �"!$#&%(')�"'(*,+�!)��-
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There are some curves and lines that characterize the
equally-spaced curves Ca and Cb. Because of sym-

metricity of the curves we only consider the upper
halves of Ca and Cb.

What is an optimal pair of half lines to approximate
them to minimize the error? Because of their symmtric-
ity, we can assume that a pair y � cx � d � x 2 0 and
y �43 cx � d � x 5 0 is optimal, where c � d 6 0. An er-
ror for a point p � x � y � on y � cx � d is given by the
difference between the distance from p to a and the
length of a perpendicular line segment from p to the line
y �73 cx � d. If we denote the other endpoint of the seg-
ment by � x � � y ��� , then the difference d is given by

d � 8 � x 3 1 � 2 � y2 398 � x 3 x� � 2 � � y 3 y � � 2
� � x 3 1 � 2 � y2 3 � x 3 x�:� 2 3 � y 3 y�;� 2< � x 3 1 � 2 � y2 � < � x 3 x� � 2 � � y 3 y � � 2 �

For this difference to converge as x goes to infinity, the
coefficient of x2 in the numerator must be 0, that is, c �
1.

Now, the difference is simplified to

d � 2 � d 3 1 � x � 1 � d2< � x 3 1 � 2 � � x � d � 2 ��= 2x2
�

It is minimized when d � 1. In fact, when c � d � 1,
the difference converges to 0 as x goes to infinity.

We have shown that an optimal pair of half lines to
approximate the curves is given by y � x � 1 � x 2 0 and
y �>3 x � 1 � x 5 0. However, it does not imply that they
are asymptotes of the curves. For any point p on Ca its
corresponding point q p on Cb that is closest to p on Cb
is defined as the image of p. If we move a point p along
Ca toward infinity, its image also moves on Cb in the
direction away from the origin. Then, does it also go to
infinity? The answer is no. Images cannot go beyond
some point q∞ on Cb.

This also means that if a point p on Ca is sufficiently
far away from the origin then it must be close to the
bisector of the two points a and q∞. So, the bisectors
can be considered as the asymptotes of our curves.

? @(A(+BAC�"!EDF-��"!G*,+B-��0/
We are now working on a Voronoi diagram based on the
curves defined here. We call it a Voronoi diagram with
neutral zones. We have obtained preliminary results.

H&*(IJ/ �)KML�!GNCO0P	!)/(+
The problem was originally given by Dr. Hiroshi Mu-
rata, a visiting professor, The University of Kitakyushu,
Japan. The authors would like to thank Benjamin Doerr,
Alexander Wolff, and Sergei Bereg for their discussions.
This work is partially supported by Ministry of Educa-
tion, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research on Priority Areas.
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SUTWV)XYV[Z�\]V_^a`cbed�fYgahHVidj^cg(Zlk	^cTWVnm�begpoqfYrsbegcft^abuZYvwZYk
rufY`aX�V
x fl^cf�gpV[^cgzy{bsv|hqfl`a^abed_oqrufY`zy x buXYbs^cflr]\]Z x V[reg&Zlk,`aViflr�ZY`
hWreflvWvqV x gaZYrub x ZY}�~�Vidj^�g�buvnf/TWV_^cV[`cZYXYVzvWV[Z�oqg x begp^a`cbs}WoW^aV x
V[v�m�bu`aZ�vW\]V[v�^�fl`cV�buv�mYVig�^cbsX�ft^aV x���� vWV�ZlkR^aTqV�k�oWv x fY\�Vzv��
^cfYr�hW`cZY}qrsVz\]g�ZlkB`cV[v x Vz`abuvWX{beg�m�begpbu}Wbursbs^�� x V_^cV[`c\�buvqfl^abuZYvN�
^aTqV.hW`cZ�d_VigagnZlk x Vid_b x buvWX���Tqfl^�hHfl`a^cg)Zlk{^aTqVEgaoW`ak�fYd_V
Zlk�^aTWV�\]Z x Vzr
d[flv�}6V&gaV[Vzv�k�`cZY\�f.h6Z�gcgabs}Wru�1\]Ztm�bsvqX
h6ZYbuv�^ ��� v��&fYrsX�ZY`cb�^cTW\�k�ZY` x V_^aVz`a\]buvWbuvWX�^cTWV/m�begpbu}Wbursbs^��
Zlk�f(gaV_^�Zlk�h6ZYru��X�ZYvqg�buv�^aTq`aVzV_� x bs\]VzvqgpbuZYvHflr4gahqf�d_V���bs^aT
f�^aZY^cfYr�Zlk
��V x XYVig]^cfY�YVzg,�� ���¡i¢�^abu\]V�bsvw^cTWVn��ZY`�gp^
d[f�gpV � SUTWbeg£XY`cZt�U^aT1`�ft^cV)beg�fEgpVz`abuZYoqg x bs¤�d_oWrs^�� � S�Z
ZtmYVz`cd[ZY\]V,b�^�TqfY` x ��fY`aV£fYdzd_V[ruV[`�ft^cZY`�g�fY`aV£oqgaV x buv¥rsZt�U�
V[v x ga��g�^cV[\{g[y�flv x hqfY`cfYrsruV[r	flruXYZ�`abs^aTq\]g,fl`cV�hW`aZ�hHZ�gpV x
k�ZY`¦TWbsX�T��@hHVz`pk�Z�`a\{flvHd_VUXY`�flhWTqbudzg�gp��gp^aVz\]g �8§ ZY`¦V_¨Wfl\]hWruVYy
^aTqV�TWb xWx V[vW�>rubsvqV�hW`cZY}WruV[\©d[flvw}6V�gpZ�rsm�V x buvL�� �ruZYX��n¢
^abu\]V£V[bs^aTWVz`�Z�v���¡£ª¦«�ª�¬­ZY`�ZYvE��¡i®8rsZ�X¦�°¯�«�ª¦¬
±¦« ��² hW`cZ�d[VzgcgpZ�`cgzy¦fYv x ^aTWV�TWb xWx Vzv��³gpoW`ak�fYd[V£hW`aZ�}WruV[\
buv�^cTWV´gafY\]V��� �rsZ�X¦�n¢(^abu\]V�ZYvL�n¡�¯�«�ª�¬ ±¦« ��²
hW`cZ�d_VzgcgaZY`�g � SUTWV&�� �ruZYX¦�n¢�`cVzgaoWrs^/d[fYvWvWZY^�}HV�k�oq`p^cTWV[`
bu\�hq`aZtm�V x V[mYVzv!b�k�fl`c}Wbs^a`�fl`cbsru�1\{flv��1hq`aZ�d_VigagaZY`�g£��V[`cV
f:mtflburufY}WruV)µ ¶�yB·t¸ �´� ruXYZY`cbs^aTW\{g���b�^cT.f�gp\{fYrsruV[`�v�oW\�}6V[`
Zlk�hW`cZ�d_VzgcgaZY`�g[yldzflrursV x£¹�ºi»t¼�½[¾[¿�Àl¼a»lÁÃÂ�»tÄ À�ºt¼jÁÃÅ�Æ�Ç�½ y�dzflv{flregaZ
}6V x V[`cbsm�V x k�`aZ�\È^cTWVzgaV{`aVigpoqr�^�g[y4V � X � y4f,TWb xWx V[vW�@gaoW`ak�fYd_V
flruXYZ�`abs^aTq\É^aTqfl^�^cfY�YVzg �  zÊUËYÌ ÍcÎqÊÏ Ð rsZ�X¦�n¢�^cbs\]V	buv,^aTWV��ZY`�g�^�d[f�gpV�}���oqgabsvqX	Ñ�¯�«�ª�¬�±¦« ��² hW`cZ�d_VigagaZY`�g�µ ·:¸ �
Ò�v�k�Z�`p^coWvqft^cV[ru�Yy�hHfl`�flrursVzr�fl`�d�TWbs^aVidj^aoq`aVig{V[bs^aTWVz`,gao�Ó�V[`
k�`cZY\Ô^cTWV´hW`cZY}WruV[\ÕZlk�reft^cV[vqd[��Z�` x ZwvWZl^ngcd[fYrsV&��V[rurÖy
TWVzvqd_V�fY`aV�V[¨�h6V[vHgpbumYV � Ò�gpbuvWX x beg�^c`abu}Wo�^cV x gaTqfl`cV x \]V[\��
ZY`c�n Ö×�Ø ² ¢�`coWvWvWbuvWX{ZYv�f]vqV_^���ZY`c��Zlk8��Z�`a��gp^cfl^abuZYvqg	µsÙj¸
gaV[V[\{g/^aZE}6V�f.}HV[^p^cV[`�flrs^aVz`avqfl^abumYV � SUTqV[`cV�fY`aV�gpZ�\�V
x `�f:��}qfYd���gzy�TWZt��V[mYVz`zy�V � X � y�ZtmYVz`aTWVif x�Ú bsk�f.hW`aZ�d[VzgcgpZ�`
vWVzV x g�^cZ]f�d[d[Vzgcg�f�mtfl`cbefl}WruV�f:mtfYbsrefl}WruV�ZYvWru��ZYv£f�`aVz\]Zl^aV
\{fYd�TWbuvWV�y�^aTqV,��TqZYruV,hHflXYV,\�oHg�^{}6V/^c`cfYvqgpk�V[`c`aV x�� ªB¨��
h6V[`a^cg�rsbu�YV,S4fYvWV[v�}qfYoW\Ûflv x mtfYvEØ�^cV[V[vLµ Üt¸UfY`aV,gad[V[h�^cb��
d[fYr Ú,Ý�ÞBß�Å³¾_¼�»lÄàÇ{º:½jÅ�áYâ�ãY¾�»t¼�½	º�ß�¼a¾j½[¾�»t¼c¹cÆ£ºlÂ�älÁe½jÅÖ¼jÁ�å[æ�Å@¾�ä
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¹[Äàæqä�¾´Å�ÆW»lÅ]è
éqê ß_ºt¼&Æ�Á�À:Æ�¿uíq¾_¼�ß_ºl¼jÇ]»lÂ6¹�¾)íq»t¼a»lÄÃÄs¾_Ä�í6¼cºt¿
ÀY¼a»lÇ�Ç�ÁÃÂ�À,¹�»tÂqÂ�ºtÅ6ß�æ�Ä ö�ÄNÁÃÅÖ½	ÁÃÂqÁÃÅ>Á�»tÄ8¾að_íq¾c¹[Å³»tÅ>Á�ºtÂW½[î�9
SUTWV�Z�}�~�Vzd_^abumYV�Zlk6^aTqbug¦`aVigpVifl`�d�T�beg8^aTWV x VzgabsX�v{flv x bu\��
hqrsVz\�Vzv�^cft^cbsZ�v£ZlkBf]rsbuXYT�^p�@��V[buXYT�^zyWbuvWV[¨�h6V[vHgpbumYV	\]VzgcgcflXYV[�
hHfYgcgpbuvWX{fl`�d�TWbs^aVzd_^aoW`cV�k�ZY`�^cTWV
m�begpoqfYrsbegcft^abuZYv,Zlk8refl`cXYV�XYV[�
Z�\]V_^a`cbed�\]Z x V[reg � SUTWbeg]gp��gp^aVz\ fYrugaZnoHgpVig�vWV[^���Z�`a��g�Zlk
��ZY`c��g�^�ft^cbsZ�vqg[yY^���hWbudzflrurs��f:mtfYbsrefl}WruV�bsv£f�oqvWbsm�V[`�gpbs^��{V[v�m�bs�
`cZYvq\�Vzv�^zy�}qo�^�oWvqrsbu�YV�×�Ø ² yRb�^�bug�f£\�Z�`aV{V[¤�d_buV[v�^�flhW�
hq`aZ�fYd�T�oqgpbuvWX�gcd[fYvWrubsvWV�flruXYZY`cbs^aTW\{g �4� gcd[fYvWrubsvWV�beg�f�`aZt�
ZYkHhWbs¨�V[regBZlk6^aTqV�bs\{flX�V � SUTWV�hWbs¨�V[reg8Zlk�f	gadzflvWrubsvqVUdzflv]}6V
Z�}�^cfYbsvqV x }�� x V_^aVz`a\]buvWbuvWX�^cTWV�m�begpbu}Wbursbs^��/ZYkB^aTWV�ZY}�~�Vidj^�g
buv]^aTqV�hWreflvWV�h6V[`ch6V[v x bed_oqrufY`�^aZ
^aTWV�gad[`aVzV[v{flv x d[ZYv�^cfYbsvW�
buvWX�^aTqV
gadzflvWrubsvqV � SUTWV	buv�^aV[`�gaVzdj^cbsZ�v/ZYk8f�h6ZYru��XYZYvW�>\]VzgaT
\]Z x Vzr� �b � V � yqf]gaV_^�ZYk4h6ZYru��X�ZYvqg�¢�flv x f�hWreflvWV�beg�f{gpV[^�Zlk
rubuvWV	gpVzXY\]V[v�^cgUbuv,^aTWV	hqrufYvWV �
� oW`£gp��gp^aVz\ bug,}qf�gpV x Z�vLf ¹_ÄàÁ�¾[ÂqÅ>¿@½[¾_¼jòt¾[¼&»l¼a¹cÆ�ÁÃÅ@¾�¹[¿
Å>æ�¼a¾ yl��TWVz`aV�f�v�oW\�}6V[`¦ZlkNgpVz`am�V[`�g8gpoWhqhHZ�`p^B^���hWbed[fYrsru�
ZYvqV
d[rsbuV[v�^ � ª¦fYd�T)gpVz`am�V[`�beg�`aVigph6ZYvHgpbu}WruV�k�Z�`�^cTWV{d[flred_oqrufl^abuZYv
ZYkqf�d[ZYoWhWruV�Zlkqgcd[flvqrsbuvWVzgzylflv x ^aTWV x VzrsbumYVz`a��Zlkq^aTWV�`aVigpoqr�^�g
}HfYd��]^aZ]^cTWV
d_rubuV[v�^���TWbud�T x begahWruf:��g�^aTqV	bs\{flX�V �
SUTWV�ZYh6V[`�ft^cbsZ�v(Zlk4^aTWV	ga��g�^cV[\ begUZYo�^crsbuvWV x f�g¦k�Z�rsruZt��g �
SUTqV(oqgaV[`iyBgpbs^p^cbsvWX�buv�k�`aZ�v�^�Zlk�fnXY`�flhWTqbudzg
��ZY`c��gp^cfl^abuZYv
`coWvWvqbsvWX�^aTqV�d[rsbuV[v�^�gpZYkÃ^���fY`aV�ytgpVzrsVidj^cg8f�XYVzZY\]V_^c`abed�\]Z x V[r
Z�`�m�bs`a^aoHflr�Vzv�m�bu`cZYvW\]V[v�^�^cTWV[�£�Uflv�^�^aZ(m�begaoqflrub;:zV ��� vqd[V
^cTWV�X�V[ZY\]V[^a`cbudB\]Z x Vzr�Tqf�gN}6V[Vzv�gpVzrsVidj^cV x yi^aTqV�d_rubuV[v�^4gaZlkÃ^p�
�Ufl`cV x beg�^c`abu}Wo�^cVzgN^aTWV�d_ZY`c`cVzgahHZ�v x buvWX x ft^�f�gaV_^4Z�v
f�TWbuXYTW�
gah6V[V x vqV_^���ZY`c��}���oqgpbuvWX ½_¹�»lÄs»Yå[Äs¾�¼c¾_ÄàÁ�»�å_Äu¾�Ç�æ�ÄàÅÖÁ�¹�»t½�Å>�4� rsr
��ZY`c��g�^�ft^cbsZ�vqgNTqf:m�buvWX�^aTWV�gaV[`cmYV[`8gaZlkÃ^��Ufl`cV�buvqgp^cflruruV x hqbud��
oqh´^aTqV/\]Z x V[r>y¦fYv x gp^aZ�`aV/b�^]ZYv�^aTWVzbs`�rsZ�dzflr x begp� ��� v
oHgpVz`Rbuv�^aVz`cf�dj^abuZYv�ylV � X � y<:[Z�Z�\,yl^a`�flvqgarufl^abuZYv�ZY`B`cZl^cfl^abuZYv�Zlk
^cTWV
\]Z x V[r>y6^aTWV�d_rubsVzv�^�}W`cZ�f x d[fYgp^cg�f>=l¨1=�TWZ�\�Z�XYVzvWV[Z�oqg
^c`cfYvqgpk�ZY`c\]fl^abuZYv�\{ft^a`cbs¨ �,� rur¦^cTWV(f:mtflburefl}WruV{gpVz`am�V[`�g�`aV[�
d[V[bum�bsvWX�^aTWbegU\{ft^c`abs¨{hHVz`pk�Z�`a\ ^cTWV�`aV�?�oqbs`cV x ^c`cfYvqgpk�ZY`c\]fl�
^cbsZ�v/Z�v(^cTWV[bu`�gp^aZ�`aV x \]Z x V[r �
ª¦f�d�TÉgpVz`am�V[`´beg�f�gagaZ�d_beft^aV x ��b�^cT f�oWvqb@?�oWVLvqfl\]VYy
��Tqbud�T1beg£flvLbsv�^aVzXYVz`/buv1^cTWV)`�flvqXYV.µ ACBEDGF Ù[¸>y���TWV[`cV
D beg�^aTqV�^aZl^�flr�v�oW\�}HVz`�Zlk�^cTWV
f:mtflburufY}WruV�gaV[`cmYVz`cgUft^�fYv��
X�bsm�V[v{h6ZYbuv�^�ZYk�^abu\�V �IH v�`cV[hWru��^aZ�f�d_rubsVzv�^�`cV ?�oWVig�^iy�VifYd�T
gaV[`cmYVz`Bd[flred_oqrufl^aVzgBf�v�oW\�}HVz`�Zlk�gcd[flvqrsbuvWVzg � Ø�d[fYvWrsbuvWVig�fl`cV
v�oW\�}HVz`aV x k�`cZY\JA�^cZLKMF�ÙYyN��TWVz`aV>K�beg�^aTWV{TqV[buXYT�^	Zlk
^cTWV�bs\{flX�VYy�b � V � y6^aTqV�^cZl^cfYr8v�oq\�}6V[`�Zlk�gcd[fYvWrsbuvWVig�Z�v�^aTqV
gcd_`cV[Vzv]Zlk�^aTWV�d_rubsVzv�^�N g¦��Z�`a��gp^cfl^abuZYv � Ø�V[`cmYVz`PO]d[fYrud[oWrufl^aVig
gcd[fYvWrubsvWVig�QSRTO ÐVU D�y8k�ZY` U RWACBzÙXBc¶CBZY YZY�B8gpoqd�T´^aTqfl^
Q&[\K�yWflv x gaV[v x g�^aTWVz\ }qf�d��{^aZ�^aTqV
d_rubsVzv�^ �
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SUTWV,d[rsbuV[v�^�^aTWVzvEf�gagaV[\�}WruVzg	^cTWV�gadzflvWrubuvWVzgzy�flv x.x beg��
hWref:��gU^aTWV�vWV_¨�^�k�`�fl\]V �)H ^�fYrugaZ�d[fYrud[oWrufl^aVig�f{vWV[��^c`cfYvqg��
k�ZY`c\{ft^cbsZ�vÉ\]fl^a`cb�¨|k�`cZY\ oqgpVz`´buvWhWo�^iy,X�ft^cTWV[`�g´gaV[`cmYV[`
gp^cft^cbugp^abed[gzy	`cV[vqfY\�V�gaV[`cmYVz`cg£bsk�vqVzd_Vigagcfl`c��fYv x bsv�k�Z�`a\{g
Vzf�d�T�gpVz`am�V[`�bsv�mYZ�rsm�V x�� SUTWV[v(b�^UXYZ�Vzg¦}qfYd���^aZ�^aTWV�}6V[XYbuv��
vWbuvWX�Zlk�^aTWV(rsZ�ZYh�}W`cZ�f x d[f�g�^cbsvWX£f,vWV[� ^a`�flvHg�k�Z�`a\{ft^cbsZ�v
\{ft^c`abs¨/flv x `cV ?�oWVig�^cbsvWX{gcd[fYvWrsbuvWVig �

H v{^aTWV�oWvWrubu�YV[ru�]d[fYgaV�ZYk�^aTWV�ZYo�^chWo�^�Zlk�f�gabuvWXYruV�gaV[`cmYV[`
begNruZ�gp^zyi^aTWV�gadzflvWrubuvWVzgNk�`aZ�\�^cTWV¦hW`cV[m�buZYoqg�k�`cfY\�V�fl`cV�oqgaV x��
� kÃ^aVzvn^cTWV[`cV]bug�vqZ x b�Ó�V[`cV[vqd[V]}HV[^���VzV[v)^aTWV�gcfl\]V{gadzflv��
rubsvWVig�ZYk�gpoq}qgpV�?�oWV[v�^
k�`�fl\]Vzg, �V � X � y8��TWVzv�f x VzgabsX�vWV[`�bug
d_Z�v�^aV[\]hWreft^cbsvqX&f&hHfl`a^]ZYk�^cTWV�\]Z x V[rÃ¢]flv x ^cTWV x bsÓ6Vz`p�
V[vHd_V(beg�Tqfl` x ru�&vWZl^cbud[Vzfl}qrsV/ZYv´\]Ztm�bsvqX�bs\{fYXYVzg �  ���ZY^aV
^aTHft^�^aTWV]gcd[flvqrsbuvWVzg�fY`aV x V[rubsm�V[`cV x }��£^cTWV{gpVz`am�V[`�g�buv�fYv
buv�^cV[`crsVif:mYV x hHft^p^cV[`cv Ú f�gcd[fYvWrsbuvWV(k�`aZ�\ gaV[`cmYVz` O&beg
k�Z�r��
ruZt��V x }���Z�vWV�k�`aZ�\ gpVz`am�V[`+O Ð Ù�yqflv x gaZ]ZYv � ¢H k�y�TWZt��V[m�V[`iyt^aTqV�d_rubuV[v�^¦vWZY^abed_Vzg�k�`aZ�\|gaV[`cmYVz`�g�^�ft^cbugp^abed[g
^aTHft^�^aTqV	ZYo�^chWo�^�ZYk8f]gaV[`cmYV[`Ubeg�d_Z�vqgabugp^aVzv�^crs�(rsZ�g�^�buv,^aTWV
refYgp^Nk�V[�&k�`�fl\]Vzgzyi^aTWV�d_rubsVzv�^4`cV[vqfY\�Vig�^aTqV�gaV[`cmYV[`�g Ú H k�ylgcf:�Yy
gaV[`cmYV[` Onbug�vWZY^�`cVzgah6ZYv x buvWXHyNgpVz`am�V[` DWF�Ù�beg�`aVzvqfl\]V x
fYg O�yNfYv x D beg�`cV x oqd_V x }���Ù � H k�f/gpVz`am�V[`�`aV[�@fYhWh6Vzfl`�gzy
bs^�bug�X�bsm�V[v(^aTWV	vqfY\]V D)yWfYv x D bug�buvqd[`aVz\�Vzv�^aV x }���Ù �
§ `cZY\ ^aTqV�fY}HZtm�V�bs^�k�Z�rsruZt��g�^cTqft^�^aTqV]ga��g�^cV[\ beg ß_»læ�ÄàÅ
Å³ºtÄs¾[¼a»tÂHÅ buv�^aTWV]gaV[vqgaV
^cTqft^�b�^�^aZ�rsVz`cfl^aVzg�}HZY^aT�ruZ�gp^�\]Vig��
gcflXYVig�fYv x gaV[`cmYV[`
k�flbursoW`cVzg � SUTWV(reft^a^aV[`�beg�hqfY`p^cbud[oWrefl`crs�
bu\�h6ZY`a^cfYv�^zyR}HVid[floHgpV{buv&^aTWbeg	�Uf:��^cTWV���ZY`c��gp^cfl^abuZYvqg x Z
vWZY^�Tqf:mYV�^cZ�}HV x V x bed[fl^aV x ^aZ{^cTWV�ga��gp^aVz\ � SUTWV�gpVz`am�V[`�g
`coWv�Z�v���ZY`c��g�^�ft^cbsZ�vqg8fYgR}qfYd���X�`aZ�oWv x hq`aZ�d_VigagaVzgz�t��TWVzv]f
��ZY`c��gp^cfl^abuZYv	X�V_^cgRb x ruVYy:^aTqV�gaV[`cmYVz`W~�ZYbuvqg4^aTqVUga��g�^cV[\£ylflv x
bs^
rsVif:mYVzg�^aTqV�gp��gp^aV[\ ��TWV[v�hW`cV[V[\]h�^cV x }��nflv�bsv�^cV[`�fYdj�
^abumYV�hW`cZ�d_Vzgcg � SUT�oqg[yl^aTWV�Tqfl` x �Ufl`cV¦d_Z�g�^RZlkW^cTWV�gp��gp^aVz\�bug
vWVzXYrubsX�bs}WruVYy�f�g¦Z�`aX�flvWb@:zfl^abuZYvqg¦rsbu�YV�oWvWbumYVz`cgab�^cbsVig¦Z�` x VzgabsX�v
Zl¤�d[Vzg�flru`cVzf x �{Tqf:mYV�V_¨�^aVzvqgabsm�V���ZY`c��g�^�ft^cbsZ�v(vWV[^���Z�`a��g �
� vWZY^aTWVz`�gabuXYvWb��Hd[fYv�^�f x m:fYv�^cflX�V�ZYkB^aTWV]hW`cZYh6Z�gaV x fY`p�
d�TWbs^aVidj^aoq`aV�bug.^cTqft^w^aTqV!gaV[`cmYVz`cg�ZYvWru�ÉvWVzV x ^aZ d_ZY\��
hWo�^cV�f�hWreflvqfY`¦m�bugabu}Wbsrubs^���hq`aZ�}WrsVz\ ��b�^cT/f�d[ZY\]hWruV_¨�bs^���ZYk
�� ���ruZYX���¢�`cfl^aTWVz`¦^cTqflv(^aTWV�·Y×LhW`cZY}WruV[\ÉZYk�d_Z�\�hqrsV[¨�bs^��
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ETH Zürich, CH-8092, Switzerland

hoffmann@inf.ethz.ch

Csaba D. Tóth
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Abstract. For n disjoint line segments in the plane
we can construct a binary encompassing tree such
that every vertex is pointed, what’s more, at every
segment endpoint all incident edges lie in a halfplane
defined by the incident input segment. Our algorithm
runs in O(n log n) time which is known to be optimal
in the algebraic computation tree model.

Introduction. Interconnection graphs of disjoint
line segments in the plane are fundamental structures
in computational geometry, and often more complex
objects are modelled by their boundary segments or
polygons. One particularly well-studied example is
a crossing-free spanning graph: the encompassing

graph for disjoint line segments in the plane is a con-
nected planar straight line graph (Pslg) whose ver-
tices are the segment endpoints and that contains
every input segment as an edge.

A simple construction shows that not every set of n

disjoint segments in the plane admits an encompass-

ing path. But there is always a path that encompasses
Θ(log n) segments and does not cross any other input
segment [6]. The question, whether encompassing
trees of bounded degree exist, was answered in the
affirmative by Bose and Toussaint [4]. Later Bose,
Houle and Toussaint [3] constructed an encompass-
ing tree of maximal degree three in O(n log n) time
and proved that the runtime is optimal.

Recently, Hoffmann, Speckmann, and Tóth [5]
have shown that for every set of disjoint segments a
pointed binary encompassing tree can be constructed
in O(n4/3 log n) time. A Pslg is pointed iff at every
vertex p all incident edges lie on one side of a line
through p.

Pointed Pslgs are tightly connected to mini-
mum pseudo-triangulations, which have numerous
applications in motion planning [10], kinetic data
structures [8], collision detection [1], and guard-
ing [9]. Streinu [10] showed that a minimum pseudo-
triangulation of V is a pointed Pslg on the vertex
set V with a maximal number of edges. As opposed
to triangulations, there is always a bounded degree
pseudo-triangulation of a set of points in the plane [7].
A bounded degree pointed encompassing tree for dis-
joint segments leads to a bounded degree pointed en-
compassing pseudo-triangulation, due to a result of
Aichholzer et al. [2].

In this paper, we improve all previous results on
encompassing trees of n segments and give a simple
algorithm to construct a pointed binary encompass-
ing tree in optimal O(n log n) time. Moreover, for
every vertex of the tree all incident edges lie on one
side of the line through the incident input segment.

Theorem 1 For a set S of n disjoint line segments

in the plane, we can build in O(n log n) time a binary

encompassing tree such that for every segment end-

point p of every input segment pq the edges incident

to p lie in a halfplane bounded by the line through pq.

Tunnel Graphs. The free space around the seg-
ments can be partitioned into n + 1 convex cells1 by
the following well known partitioning algorithm: For
every segment endpoint p of every input segment pq,
extend pq beyond p until it hits another input seg-
ment, a previously drawn extension, or to infinity.

1For simplicity, we assume that no three segment endpoints
are collinear.
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(a) Partition. (b) Tunnel Graph. (c) Encompassing Tree.

p

q

a

b

c

(d) Disconnected.

Fig. 1: An example for a partition with an assignment (a), the corresponding tunnel graph (b), and the
resulting tree (c). A partition for which no assignment gives a connected tunnel graph (d).

Consider a set of segments S and a convex partition
P (S) obtained by the above algorithm. Let us assign
every p to an incident cell τ(p) of the partition. A key
tool in our proof is the tunnel graph T (S, P (S), τ) of
P (S) and the assignment τ , defined as follows: The
nodes of T correspond to the convex cells of P (S),
two nodes a and b are connected by an edge iff there
is a segment pq ∈ S such that τ(p) = a and τ(q) = b.
It is easy to see that the tunnel graph is planar. As
T has n + 1 nodes and n edges, it is connected iff it
is a tree.

Theorem 2 For any set S of n disjoint line seg-

ments, we can construct in O(n log n) time a convex

partition P (S) and an assignment τ such that the

tunnel graph T (S, P (S), τ) is a tree.

We note that Theorem 2 does not hold for every par-
tition: Fig. 1(d) shows 7 disjoint line segments and
a convex partition such that there is no assignment
for which the tunnel graph is connected. The proof
of Theorem 2 can be found in the full version of this
paper. Our main result follows from Theorem 2.

Proof of Theorem 1. Consider a partition P (S)
and an assignment τ provided by Theorem 2. In each
cell connect the segment endpoints assigned to it by
a simple path.

The resulting graph is clearly a Pslg that en-
compasses the input segments. The maximal degree
is three because we add at most two new edges at

every segment endpoint. It remains to prove con-
nectivity. Let p and r be two segment endpoints.
We know that the tunnel graph is connected, so
there is an alternating sequence of cells and segments
(a1 = τ(p), p1q1, a2, . . . , pk−1qk−1, ak = τ(r)) such
that τ(pi) = ai and τ(qi) = ai+1, for every i. As
all segment endpoints assigned to the same cell are
connected, this path corresponds to a path in the en-
compassing graph. 2

References

[1] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and
L. Zhang, Deformable free space tilings for kinetic collision
detection, in Proc. 4th WAFR, 2001, 83–96.

[2] O. Aichholzer, M. Hoffmann, B. Speckmann, and Cs. D. Tóth,
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1 Introduction

In computer graphics, a common way of represent-
ing objects is with their triangulations. The perfor-
mance of operations executed on these objects depends
highly on how their surfaces are triangulated and how
these triangles are transmitted to the processing engine.
Thus, to speed up many operations, such as rendering
or compression [9, 10], it is desirable that triangles be
arranged such that their adjacency information is pre-
served.

In this paper we present a sparse vertex-adjacency
dual of a polygon triangulation, which is a graph that
preserves the vertex-adjacency information of the tri-
angles and contains a Hamiltonian cycle. The size of
this graph is linear in the number of polygonal vertices.

Effort has been made to design algorithms that pro-
duce Hamiltonian triangulations, where the dual graph
of the triangulation is a path. In [1], Arkin et al. show
that any set of n points has a Hamiltonian triangula-
tion and describe two algorithms which construct such
triangulations. They also show that the problem of de-
termining whether a polygon (with holes) has a Hamil-
tonian triangulation is NP-complete. In the same paper,
a sequential triangulation of a set of points is defined to
be a Hamiltonian triangulation whose dual graph con-
tains a Hamiltonian path, and it is proved that such
triangulations do not always exist for any given set of
points.

Hamiltonian properties of general triangulations
have been studied extensively. Various results that con-
struct a Hamiltonian cycle in a given triangulation can
be classified based on the model considered. In one
model, the given triangulation is allowed to be modi-
fied by adding new vertices or Steiner points. In [7],
Gopi and Eppstein present an algorithm for construct-
ing a Hamiltonian cycle in a given triangulation by in-
serting new vertices within existing triangles.

In the second model, the input triangulation cannot

be modified. In this case, the problem is that of arrang-
ing adjacent triangles in some order such that the result-
ing graph contains a Hamiltonian cycle. An important
property here is how adjacency is defined. In the dual
graph of a triangulation, adjacency is defined as edge-
adjacency where two triangles are adjacent when they
share an edge. Unfortunately, it is not always possible
to find Hamiltonian cycles in the dual graph.

Hamiltonian cycles in triangulations are studied
when adjacency is defined as vertex-adjacency, where
two triangles are considered to be adjacent if they share
at least one vertex. In [5], a triangulation is repre-
sented with a vertex-facet incidence graph which has
a vertex f for each facet (triangle), a vertex v for
each triangle-vertex and an edge (v, f) whenever v is
a vertex of triangle f . A facet cycle is defined by
a walk (v0, f1, v1, f2, v2, . . . , fk, vk, f0, v0) where no
arc is repeated and that includes each facet vertex ex-
actly once, but may repeat triangle-vertices. The au-
thors prove that any triangulation has a facet cycle if
it is not a checkered polygonal triangulation - that is if
it does not have a 2-coloring of the triangles such that
every white triangle is adjacent to three black ones.

A similar result under the same facet cycle model
is found in [2]. Here, Bartholdi III and Goldsman re-
fer to general triangulation as Triangulated Irregular
Networks (TINs). The authors describe an algorithm to
construct a cycle in a 2-adjacent TIN (a triangulation
in which each triangle shares an edge with at least two
other triangles). Their algorithm runs in O(n2) time in
the worst case.

In [4], Chen, Grigni and Papadimitriou define the
map graph of a planar subdivision P (or a map) to be a
graph G where the vertices of G correspond to the faces
of P and two vertices u and v are adjacent if their corre-
sponding faces in P share any point on their boundary.
This characterization is equivalent to the dual graph of
a triangulation in which two vertices u and v of the
dual are connected by an edge whenever the triangles
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corresponding to u and v share a triangular edge or a
triangular vertex. Chen et al. study sparsity and color-
ing of map graphs.

Bartholdi III and Goldsman [3] introduce the same
concept of a map graph that they call the vertex-
adjacency dual of a general triangulation. The authors
show that the vertex-adjacency dual contains a Hamil-
tonian cycle, and they describe a linear time algorithm
to construct such a cycle. Here we note that the model
described in [3] is a variation of the facet-cycle model
described in [5]: In the facet cycle model a continuous
walk enters every triangle from a vertex v and leaves
from a different vertex u. In the vertex-adjacency dual
model, u and v are allowed to be the same vertex. The
vertex-adjacency dual described in [3] can have O(n2)
edges in the worst case. Here we consider linear size
subgraphs of the vertex-adjacency dual that still contain
Hamiltonian cycles, and that may be computed in lin-
ear time. We call such graphs sparse vertex-adjacency
duals.

2 Constructing a Sparse Vertex-
Adjacency Dual

Here we illustrate an approach with the simple case of
sequential triangulations [6].

Let P be a simple polygon with n vertices and let TP

be a sequential triangulation of P . We will refer to the
vertices of P as polygonal vertices and to the vertices
of the dual graph D of TP as dual vertices.

To construct the sparse vertex-adjacency dual of
TP , first construct its dual graph D, which in this
case is a path. Then, for every polygonal vertex
vP , if vP is shared by k > 2 consecutive triangles
t1, t2, . . . , tk, insert an edge between the first and
last triangles t1 and tk. The resulting graph G is a
sparse vertex-adjacency dual. To show that it contains
a Hamiltonian cycle, consider the following. In the
dual graph D of TP every consecutive vertices u, v

and w are vertex-adjacent. Thus, connecting every u to
w in the sparse vertex-adjacency dual is equivalent to
connecting the vertices which are at distance 2 apart.
The resulting graph is known as the square of D. In
[8], it is shown that if removing the leaves of a tree T

produces a path, then the square of T is Hamiltonian.
In our case, our tree is the dual graph D, which will
still be a path if we remove its leaves. Thus, from the
results in [8] we can conclude that our construction for
a sequential triangulation yields a Hamiltonian cycle
(figure 1).

Figure 1: The sparse vertex-dual of a sequential tri-
angulation is equivalent to the square D2 of the dual
graph D.

We can show that for any serpentine triangulation,
the above construction will produce a graph that con-
tains a Hamiltonian cycle. For general polygonal tri-
angulations however, this construction needs a slight
modification in order to contain such a cycle while pre-
serving adjacency information of the triangles.
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1. Introduction

Simultaneous embedding of planar graphs is related to
the problems of graph thickness and geometric thickness.
Techniques for simultaneous embedding of cycles have
been used to show that the degree-4 graphs have geomet-
ric thickness at most two [3]. Simultaneous embedding
techniques are also useful in visualization of graphs that
evolve through time.

The notion of simultaneous embedding is related to
that of graph thickness. Two vertex-labeled planar graphs
on n vertices can be simultaneously embedded if there
exist a labeled point set of size n such that each of the
graphs can be realized on that point set (using the vertex-
point mapping defined by the labels) with straight-line
edge segments and without crossings. For example, any
two paths can be simultaneously embedded, while there
exist pairs of outerplanar graphs that do not have a simul-
taneous embedding.

In this paper we present new results about embedding
labeled trees and outerplanar graphs on labeled tracks,
as well as related results on simultaneous embedding
of tree-path pairs. In particular, we show that labeled
trees cannot be embedded on labeled parallel straight-line
tracks, but they can be embedded on labeled concentric
circular tracks; see Fig. 1. The results generalize to out-
erplanar graphs as well. We also show that tree-path pairs
can be simultaneously embedded when edges of the path
are represented by circular arcs. Finally, we show how to
embed a straight-line tree and a path with O(log n)-bends
per edge, where n is the number of vertices.

1.1. Related Work

The existence of straight-line, crossing-free drawings for
a single planar graphs is well known [5]. The exis-
tence of simultaneous geometric embeddings for pairs of
paths, cycles, and caterpillars is shown in [1]. Counter-
examples for pairs of general planar graphs, pairs of
outer-planar graphs, and triples of paths are also pre-
sented there. It it not known whether tree-tree or tree-path
pairs allow simultaneous geometric embeddings. If the

∗This work is partially supported by the NSF under grant ACR-
0222920 and by ITCDI under grant 003297.

straight-line edge condition is relaxed, it is known how to
embed tree-path pairs using one bend per tree edge and
how to embed tree-tree pairs using at most 3 bends per
edge [4].

A related problem is the problem of graph thick-
ness [7], defined as the minimum number of planar sub-
graphs into which the edges of the graph can be parti-
tioned into. Geometric thickness is a version of the thick-
ness problem where the edges are required to be straight-
line segments [2]. Thus, if two graphs have a simultane-
ous geometric embedding, then their union has geomet-
ric thickness two. Similarly, the union of any two planar
graphs has graph thickness two. Simultaneous geometric
embedding techniques are used to show that degree-four
graphs have geometric thickness two [3].

Simultaneous drawing of multiple graphs is also re-
lated to the problem of embedding planar graphs on a
fixed set of points in the plane. Several variations of this
problem have been studied. If the mapping between the
vertices V and the points P is not fixed, then the graph
can be drawn without crossings using two bends per edge
in polynomial time [6]. However, if the mapping between
V and P is fixed, then O(n) bends per edge are necessary
to guarantee planarity, where n is the number of vertices
in the graph [8].

1.2. Our Contributions

We begin with results on track embeddability. Given a
set of labeled parallel lines (tracks) Li, 1 ≤ i ≤ n and a
tree T = (V, E) with n vertices labeled with the numbers
1 though n, it is not always possible to obtain a straight-
line crossings-free drawing of T such that vertex vi is on
track Li; see Fig. 1(a). However, if the tracks are con-
centric circles, such drawings are always possible and
we describe a linear time algorithm for obtaining such
drawings; see Fig. 1(b). The algorithm easily generalizes
to outerplanar graphs as well. Thus, parallel line tracks
do not allow tree or outerplanar embeddings on predeter-
mined tracks, while circular tracks do. Tracks defined by
circular arcs, stairs, sin-waves also suffice; see Fig. 2.

Our motivation for the problem of track embeddings
comes from two open problems in simultaneous geomet-
ric embedding. Formally, in the problem of simultane-
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Figure 2: A tree drawn on various staircases: (a) staircase; (b) sin(x); (c) x sin(x); (d) x − bxc.

ous geometric embedding we are given two planar graphs
G1 = (V, E1) and G2 = (V, E2) and we would like to
find plane straight-line drawings D1 and D2 such that for
all vertices v ∈ V the location of the corresponding ver-
tices in D1 and D2 is the same (i.e., Di(v) = Dj(v)).
While path-path, cycle-cycle, caterpillar-caterpillar pairs
can be simultaneously embedded, it is not known whether
tree-tree or tree-path pairs have such embeddings.

The circular track layout of trees and outerplanar
graphs can be used to obtain simultaneous embeddings
of tree-path pairs so that the tree edges are straight-line
and crossings-free and the path edges are crossings-free
circular-arc segments. Moreover, the staircase layout of
trees can be used to obtain simultaneous embeddings of
tree-path pairs so that the tree edges are straight-line and
crossings-free and the path edges are crossings-free and
have at most lo g n bends per edge.
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Abstract
The connectivity coder by Touma and Gotsman encodes
a planar triangulation through a sequence of vertex de-
grees and occasional “ split” symbols that have an asso-
ciated offset value. We show that the split offsets of the
TG coder are not redundant by giving examples of degree
sequences that have two different decodings if the split
offsets are not specified. Surprisingly, such examples are
rare and a large number of encodings remain unique.

1 Introduction

Recent years have seen a number of schemes that com-
pactly encode triangle mesh connectivity by a sequence
of symbols that specify how to grow a “ compression
boundary” enclosing an already encoded region, one tri-
angle at a time. A popular scheme is the Triangle Mesh
Compression method by Touma and Gotsman [7], or TG
coder for short. For planar triangulations, the TG coder
generates a sequence of vertex degrees that usually con-
tains a few “ split” symbols with associated offset values.

There has been speculation that it might be possible to
modify the TG coder to operate without explicitly stor-
ing the offsets values. The Cut-border Machine [3] and
Dual-Graph Method [5] explicitly include split offsets,
but the otherwise identical Edgebreaker [6] and Face-
Fixer [4] schemes avoid them, getting by only with the
“ end” symbols in the code sequence. However, the TG
coder does not store explicit “ end” symbols. It maintains
more state information on the compression boundary than
Edgebreaker or Face Fixer that—together with explicit
offsets—makes “ end” symbols implicit. But if we omit
the offsets we can find sequences with two valid decod-
ings even if we add explicit “ end” s to the code sequence.

2 Connectivity coding with the TG Coder

To encode a triangulation, the TG coder [7] grows an
encoded region, maintaining one or more compression
boundaries into which it includes triangle after triangle.
It usually includes the triangle adjacent to the gate edge,
which advances in clockwise order around the focus ver-
tex. However, it immediately includes any triangle that
shares two edges with the compression boundary.
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Figure 1: The smallest scenarios where an offset-less encoding
with “ split” and “ end” symbols is not unique occur in triangula-
tions of 11 vertices. The top right example, however, is unique.

The encoder starts with an compression boundary of
length two around an arbitrary edge, records the degree of
the two initial boundary vertices, and sets their slot count
to be one less than their degree. Whenever all boundary
vertices have a slot count of one or higher, the triangle
adjacent to the gate shares only one edge with the com-
pression boundary. Usually the third vertex of the trian-
gle at the gate is a previously unprocessed vertex, and
the encoder simply “ adds” this vertex as a new bound-
ary vertex and records its degree. Occasionally, the third
vertex of this triangle is already on the boundary, and the
encoder splits the compression boundary into two loops,
temporarily stores one on a stack, and continues encoding
on the other. Here the encoder records a split symbol and
offset, which is the number of slots that are on the bound-
ary part that is stored on the stack, from which it can de-
rive how many slots are clockwise along the boundary
between the gate and the split vertex.

In the full paper we consider four offset-less encod-
ings, each with less information about the split operations
that occur during the encoding process. The strongest is
if we omit the offset, but still record “ end” symbols that
mark the completion of a boundary loop. Figure 1 illus-
trates the smallest examples for which this encoding is
non-unique: in triangulations with 11 vertices there are
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two possible ways of splitting the boundary of length 6

that has its 1 6 slots distributed in this particular configura-
tion and where both resulting boundary parts still enclose
two unprocessed vertices of degree 3 and 4. However,
there are not always two valid decodings in this scenario.
Sometimes the focus is already connected to other ver-
tices of the boundary through previously decoded trian-
gles. This places additional constraints on the possibili-
ties for splitting the boundary. The top-right triangulation
from Figure 1, for example, has only one valid decoding.

Theorem. For the TG coder without split offsets, but with
end symbols, there exist two different triangulations that
have the same offset-less encoding.

3 Searching for valid decodings

In order to find all valid decodings of an offset-less en-
coding we search through all possibilities of performing
split operations. For each attempt it recursively starts to
decode the first boundary part and in case this is success-
ful does the same for the second. Only if both recursions
are successful it returns a success, otherwise it tries out
the next possibility or returns a failure if there are none
left. A few observations help us to immediately eliminate
some splits from further consideration.

Initial experiments seemed to indicate that the split off-
sets of the TG coder might in fact be replaced by “ end” s.
On our standard set of example meshes the search for
split offsets would find the correct answer every run we
tried. Table 1 shows that non-unique encoding are sur-
prisingly rare. The full paper has further experiments
showing that only a small fraction of random triangula-
tions have non-unique encodings.

4 Closing discussion

There have been attempts to establish a guaranteed bound
on the coding costs of the TG coder. However, the infre-
quently occuring “ split” symbols and their offsets made
this a difficult task. Our work shows that these split off-
sets are not completely redundant. There remains the
task of determining if any degree-based coder can avoid
offsets. Alliez and Desbrun [1] suggested an adaptive
traversal heuristic that lowered the number of split oper-
ations and the remaining number of “ splits” seemed neg-
ligibly small. Therefore the authors restricted their worst
case analysis to the vertex degrees. But Gotsman [2] has
shown that the entropy analysis of Alliez and Desbrun in-
cludes many degree distribution that do not correspond to
actual triangulations, and that there are fewer valid per-
mutations of degrees than triangulations and that addi-
tional information is necessary to distinguish between.
So split information does contribute a small but neces-
sary fraction to the encoding.

meshes splits non-unique
name vertices encodings min max avg encodings

cow 2,904 17,412 13 22 16.8 0
fandisk 6,475 38,838 0 12 3.3 0
horse 48,485 290,898 7 29 15.4 9
dinosaur 56,194 337,152 27 56 40.4 10
rabbit 67,039 402,222 0 27 9.0 56
armadillo 172,974 1,037,832 36 76 55.2 146

Table 1: We show several meshes with their histograms of
splits. The table lists numbers of vertices and encodings, split
statistics, and number of non-unique encodings for each mesh.
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1 Intro ductio n

Let B b e any set of n ax is-aligne d b ox es in R
d, d ≥

1. F or any p oint p, w e d e fi ne th e su b se t Bp of B as
Bp = {B ∈ B : p ∈ B}. A b ox B in Bp is said
to b e stabbed b y p. A su b set N ⊆ B is a (1/c)-net

for B if Np 6= ∅ for any p ∈ R
d su ch th at | Bp | ≤ n/c.

T h e nu m b e r of d istinct su b se ts Bp is O((2n)d), so th e
se t sy ste m d e scrib e d ab ov e h as so-calle d fi nite V C -
d im ension d. T h is ensu res th at th e re alw ay s e x ists
(1/c)-nets of siz e O(dc log(dc)), and th at th e y can b e
fou nd in tim e Od(n)cd, u sing q u ite general m ach inery
(se e for e x am p le th e b ook s b y M atou še k [3] or b y
P ach and Agarw al [7]). F or som e set sy ste m s, su ch
as h alfp lanes in R

2 and translates of a sim p le c lose d
p oly gon, it w as sh ow n th at th e re e x ist (1/c)-nets of
siz e O(c) [4]. T h is w as e x tend e d to h alfsp ac es in R

3

and p se u d o-d isk s1 in R
2 [2].

In th is p ap er, w e inv estigate a fast, O(n log c)-tim e
constru c tion of (1/c)-nets of siz e O(c) for any v alu e
1 < c ≤ n and d = 2. Until righ t b e fore J C DC G , I
th ou gh t I cou ld p rov e th e follow ing (w h ich u nfortu -
nate ly re m ains a conje c tu re):

Conjecture 1 L et B be a set of n axis-aligned boxes

in R
2 and c be any param eter 1 ≤ c ≤ n. T hen there

exists a (1/c)-net N for B of size O(c).

W e can p rov e th is resu lt and also p rov id e algorith m s
th at ru n in tim e O(n log c) only for sp e c ial cases: seg-
m ents on th e real line (th e one-d im ensional case),
q u ad rants of th e form (−∞, x] × (−∞, y ] in R

2, and
u nb ou nd e d b ox es of th e form [x1, x2]×(−∞, y ] (w h ich
w e call a sky line). F or th e general case of b ox es, w e
can p rov e a siz e b ou nd of O(c log log c). B u t th e con-
je c tu re still stand s.

∗Resea rch o f th is a u th o r h a s b een su p p o rted b y NS F C A-

RE E R G ra n t C C R-0 1 3 3 5 9 9 .
1In th is c o n tex t, a c o llec tio n o f sh a p es is c a lled a p seu d o -

d isk set sy stem if g iv en a n y th ree p o in ts, th ere is a t m o st o n e

sh a p e in th e c o llec tio n w h o se b o u n d a ry p a sses th ro u g h th ese

th ree p o in ts.

2 Interv als o n the line

W e fi rst p rov e th at it is easy to fi nd sm all nets for
interv als on th e line , th e one -d im ensional case of th e
p rob le m ab ov e .

Theorem 2 L et B be a set of n intervals on the real

line R and c be any param eter 1 < c ≤ n. T here

exists a su bset N of at m ost 2dc − 1e boxes in B that

is a (1/c)-net for B. S u ch a set can be fou nd in O(n+
n log c) tim e.

3 Rectang les in the plane

W e generaliz e th e m e th od of th e p re v iou s p aragrap h
to th e p lane . W e b egin w ith th e easier p rob le m w h en
all th e b ox es are sou th -w e st q u ad rants, i.e . th e y con-
tain th e p oint (−∞,−∞).

Theorem 3 L et B be a set of n qu adrants w ith the

sam e orientation in R
2, and c be any param eter 1 <

c ≤ n. T hen there exists a (1/c)-net N for B of size

dc − 1e. S u ch a net can be fou nd in tim e O(n log c).

Let u s ad d one m ore sid e to th e q u ad rants: a sky line

is a set of b ox es th at all interse c t a com m on line . W e
are only intereste d in w h at h ap p ens on one sid e of
th at line , so w e can consid e r u nb ou nd e d b ox es of th e
form [x1, x2] × (−∞, y ]. W e can ex tend th e p re v iou s
resu lt to a sk y line .

Theorem 4 L et B be a set of n axis-aligned boxes,

all u nbou nded in som e com m on direction, and c be

any param eter 1 < c ≤ n. T hen there exists a (1/c)-
net N for B of size at m ost d2c − 1e. S u ch a net can

be fou nd in tim e O(n log c).

Using th is resu lt, w e can now solv e th e general p rob -
le m for b ox es. Unfortu nate ly , w e cannot solv e th e
conje ctu re , b u t w e can p rov e :
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Theorem 5 Let B be a set of n axis-aligned boxes in
R

2 and c be any param eter 1 < c ≤ n. T hen there
exists a (1/c)-net N for B of size O(c log log c). S u ch
a net can be fou nd in tim e O(n log c).

4 k-o riented o b je cts

A natu ral generalization of b ox es in R
2 is th at of a k-

oriente d conv e x p oly gon [6], w h ich is sim p ly a conv e x
p oly gon w h ose sid e s are constraine d to b e p aralle l to
a set of k fi x e d d ire c tions (k = 2 for b ox es). O u r
p roof e x tend s th e re as w e ll. In fact, w e su sp e c t th at
any resu lt for b ox es w ou ld e x tend to k-oriente d p oly -
gons w h e re th e constants in th e O() notations b e com e
fu nctions of k. B u t w e h av e no p roof of su ch a general
state m ent.

5 O rthants in hig he r dim ensio n

As sh ow n in th e p re v iou s se c tion, th e k e y p rob le m is
th at for th e generaliz e d orth ants, w h ich w e call or-
th ants for sh ort. W e are now intereste d in th is p rob -
le m for any d im ension. W e fi rst p rov e th at fi nd ing
nets for orth ants d oes ind e e d h e lp for b ox es.

Theorem 6 A ssu m e that there exists ε-nets of size
s(ε) for any set of orthants in R

d, and that s() is non-
decreasing and has polynom ial grow th (w hich im plies
s(O(x)) = O(s(x))). Let B be a set of n boxes in R

d

and c be any param eter 1 ≤ c ≤ n. T hen there exists
a (1/c)-net N for B of size Od(s(1/c)). S u ch a net
can be fou nd in tim e O(n log c).

Now w e sh ow h ow sm all nets w e can fi nd e ffi c iently
for orth ants. T h e b ou nd is far from op tim al for d i-
m ensions greater th an 2, as nets of siz e Od(c log c)
e x ist b u t tak e m u ch longer to com p u te (se e th e intro-
d u c tion).

Theorem 7 Let B be a set of n orthants w ith the
sam e orientation in R

d and c be any param eter 1 ≤
c ≤ n. T hen there exists a (1/c)-net N for B of size
Od(c

d−1). S u ch a net can be fou nd in tim e O(n log c).

F or p oints and h alfsp ac es in R
d, M atou še k , S e id e l,

and W e lz l [4] h av e sh ow n th at th ere e x ist ε-nets of
siz e O(1/ε). T h e y also sh ow th at it su ffi c e s to restric t
to p oints in conv e x p osition, alb e it b y h av ing nets
b igger b y a factor of d. W e p rov e an analog resu lt for
orth ants, w ith ou t th e b low u p factor. T h e analogu e
of conv e x p osition for orth ants is m ax im al p osition,
as d e fi ne d in [8].

L em m a 8 S u ppose there exists a ε-net of size s(ε)
for any set of orthants in R

d in m axim al position.
T hen there exists an ε-net for any set of orthants in
R

d of size s(ε).

6 C o nclusio n

T h is sh ow s anoth er set sy ste m w h e re th e general
b ou nd O(c log c) for a (1/c)-net cou ld b e im p rov e d
to O(c), and m ore e ffi c ient algorith m s can b e fou nd .
K om los, P ach and W oeginger [2] h av e sh ow n th at
th e re e x ist set sy ste m s for w h ich (1/c)-nets m u st h av e
siz e Ω (c log c).
T h is also p oses th e analog p rob le m of fi nd ing good
ap p rox im ations, in th e sense th at not only d oes p h it
fe w b ox es if it m isses N , b u t th e nu m b e r of h its in N
re fl e c ts th e nu m b e r of h its in B (scale d b y | N | / | B| ).
T h e ap p roach ab ov e se e m s to collap se b e cau se noth -
ing gu arante es th e re p re sentativ ity of N .
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The Metric TSP and the Sum of its Marginal V alues
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Abstract

This paper examines the relation between the length of an optimal Traveling Salesman tour
and the sum of its nodes’ marginal values (a node’s marginal value is the difference between the
length of an optimal TSP tour over a given node set and the length of an optimal TSP tour over
the node set minus the node). To our knowledge, this problem has not been studied previously. W e
find that in metric spaces L1,L4/3,L2,L4,L∞, the event in which the sum of TSP marginal values
is greater than the length of the optimal tour is very rare. W e present a number of cases for which
the sum of marginal values is never greater that the optimal tour. W e establish a worst case ratio
of 2 for any metric TSP. In addition, for 6 node TSPs we determine the worst ratio for L1,L∞

norms, triangular inequality, and symmetric distance, of 10/9, 10/9, 1.2, and 1.5 respectively, by
solving the appropriate mixed integer programming problems.
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Optima l A re a Tria n g u la tio n w ith A n g u la r C o n stra in ts
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1 8 O c to b e r 2 0 0 4

Extended A b stra c t

1 In tro d u c tio n

We stu d y triangu lations of planar sets of points. T he problem of interest is to optim ize the area of the
ind ivid u al triangles in the triangu lation, or to fi nd the M inM ax and M axM in area triangu lations of the given
point set. T hese two problem s ad m it polynom ial tim e algorithm s in the case when the point set is a convex
polygon. In the general case, the problem s are of u nknown com plexity. T he problem of fi nd ing the M inM ax
area triangu lation is m entioned as a hard open problem in E d elsbru nner’s book [2]. In this paper we d iscu ss
an approach for approxim ating these two optim al area triangu lations with a triangu lation that has angu lar
restrictions im posed . T his resu lts in a su bcu bic algorithm for fi nd ing the approxim ating triangu lation. T he
approxim ation ratio d epend s on angu lar param eters, analytical resu lts on this are shown.

2 A n g u lar re stric tio n s an d fo rb id d e n z o n e s

S u ppose the optim al area triangu lation (either M axM in or M inM ax area) contains sm all angles, which is
known to be u nsu itable for practical pu rposes. D enote the sm allest angle in the optim al triangu lation (which
we d on’t know) as β. We call triangu lation that has all of its angles larger than β a β -triangu lation. We want
to constru ct an α-triangu lation, which is ”fatter” (α > β), that approxim ates the optim al with a practical
coeffi cient. G iven the fact that all of the angles of the α-triangu lation are going to be larger than α, we can
d efi ne a region su rrou nd ing each ed ge of the triangu lation, called forbid d en zone. T he forbid d en zone of an
ed ge is by d efi nition a region that is em pty of points of the original point set if the ed ge is in the triangu lation.
In these circu m stances, the forbid d en zone is a polygonal region, recu rsively d efi ned by ad d ing to the ed ge
isosceles triangles with a base the ed ge itself, and base angles of α, and continu ing this process ou tward s of
the alread y tiled area infi nitely. F irst fou r steps are shown in F igu re 1. T he param eters of the forbid d en
zone are fu lly d eterm ined by the length of the ed ge a and the angle α. T he forbid d en zone entirely contains a
trapezoid with the given ed ge as a base, base angles of 3α and heighth of (a/2) tanα. T he zone also entirely
contains a circle su rrou nd ing each of the end points of the ed ge. P lease refer to F igu re 2 for an illu stration.

F igu re 1: Recu rsive constru ction of the forbid d en zone
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Figu re 2: The bord er of the forbid d en zone u p to third ord er

3 Pe rfe c t m atch in g s an d bo u n d s

To obtain the bou nd s for approximation factors, we u se the perfect matching between the β -triangu lation
and the α-triangu lation, as d escribed in A ichholzer’s paper [1]. We stu d y all the possible cases of matched
triangles and positions of the points with respect to the forbid d en zones. B ased on this we d erive the following
bou nd s of the approximation factors for the M axM in area triangu lation:

f1 = m a x

(

1

tanα tan2 β tan β

2

,
1

sinα tan2 β
,
2(1 + k)(1 + 2k)

tanα
,

k2

sinα

)

and for the M inM ax area triangu lation:

f2 = m a x

(

1

tanβ tan2 α tan α
2

,
1

sinβ tan2 α
,

1

2(1 − k)(1 − 2k) sinβ tan α
2

,
1

k2

1
sin 2β

)

where k, k1 and n are the following parameters of the forbid d en zone:

k =
tanα

2 sin 3α
k1 = 1

2n co sn α
n =

⌈

180◦

2α
−

1

2

⌉

The approximation factor f1 shows how many times the smallest area triangle in the approximating α -
triangu lation is smaller than the smallest area triangle in the optimal (M axM in area) triangu lation. S imilarly,
f2 gives the ratio of the largest area triangle in the approximating triangu lation, compared to the largest
area triangle in the optimal (M inM ax area) triangu lation.

4 A lg o rith m ic re su lts an d sam p le valu e s

B ased on the fact that we can compu te the optimal 30◦-triangu lation (if it exists) by mod ifi ed K lincsek ’s
algorithm, or we can relax D elau nay by area eq u aliz ing fl ips, we achieve a su bcu bic algorithm that approx-
imates the optimal area triangu lations, by the above given factors. The valu e of α can be chosen from
practical consid erations. H ere are some sample resu lts, su mmarized in a table:

α 30 30 25 25 20 20 15
β 25 20 20 15 15 10 10
f1 35.930 74.149 91.807 226.87 290.66 1010.1 1372.0
f2 24.010 30.716 56.994 77.418 311.28 455.06 7900.1

Table 1: S ample valu es for f1 and f2
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Detectin g Du p lica tes Am o n g Sim ila r
Bit V ecto rs

(o f co u rse, w ith g eo m etric a p p lica tio n s)

Bo ris Aro n o v1 a n d J o h n Ia co n o 2

Abstra c t We sh ow h ow to d etect d u p licates in a

sequ ence of k n-bit vectors p resented as a list of

single-bit ch anges betw een consec u tive vectors, in

O((n + k) log n) tim e .

Proble m We are given a sequ ence S = {v1, . . . ,vk}
of k n-bit vectors, presented as follow s: The first bit

vector is all zeros and each su bsequ ent vector vi is

obtained from the previous vector vi−1 by flipping a

single b it in p osition bi, 0 ≤ bi < n. S is re p re sente d

as b2,b3, . . . ,bk. The problem is to detect duplicates

in the seq uence v1,v2, . . . ,vk. More formally , we seek

a labeling S → {1, . . . ,k}, vi 7→ ci, su ch th at ci = cj

iff vi = vj .

Solution Without loss of generality in the remaind er

of this note we assume that n is a p ower of two. L et T

b e the p erfectly b alanced b inary tree on n leaves. We

numb er the leaves of T from 0 to n − 1 and assoc iate

each with a b it p osition. Each interior nod e x of T is

similarly associated with a block B(x) of consecutive

bit positions corresponding to the leaves of the sub-
tree rooted at x. F or a bit vector vi, let vi(x) be its
substring in B(x). The idea behind our data struc-
ture is simple: each node x has an associated data
structure that stores implicitly the set

⋃k

i=1{vi(x)}.
The data structure stored at node x consists of two

array s Dx an d Fx th at store th e follow in g d ata:

• Dx[1, . . . , d x] con tain s th e sorte d se t in c lu d in g 1
and all distinct values i, 1 < i ≤ k, such that
vi−1(x) 6= vi(x).

• Fx[1, . . . , d x] contains integers in the range

1, . . . , d x with the property that Fx[i] = Fx[j]
iff vDx[i](x) = vDx[j](x).

1Research su p p o rted in p art by NS F IT R Gran t CCR-00-

819 64 and b y a grant from U S-Israe l B inational Sc ienc e F oun-

dation; part of w ork has b een carried out w hile v isiting M ax -

Planck-Institut für Informatik. D ep artment of C omp uter and

Information Science, P oly technic U niversity , 5 M etroTech Cen-

ter, Bro o k ly n , NY 1 1 2 0 1 U S A; h ttp :/ / c is.p o ly .e d u / ˜ a ro n o v .
2Research su p p orted in p art by NSF g rant CCF-0430849.

Department of C omputer and Information Science, P oly technic

University, 5 M etroTech Center, Brook lyn, NY 11201 USA;

h ttp :/ / jo h n .p o ly .e d u .

We now complete th e d escription of our algorith m,

by explaining h ow to initialize Dz and Fz for all

leaves z ∈ T and h ow to compute Dx and Fx from

Dl,Fr,Dl,Fr for any internal node x with ch ildren l

an d r. Froot d e scrib e s th e d e sire d lab e lin g of S, sin ce

Droot con tain s all th e n u m b e rs 1, . . . , k .

If on e store s all of th e leave s z in an array in n u m eri-

cal ord er, a lin ear scan of th e se q u e n ce b2,b3, . . . ,bk of

bit up dates allows one to initialize arrays Dz and Fz,

for all z. S p ec ifically , w e store th e c u rren t bit vector

vi−1 explicitly in a bit array V [0, . . . , n − 1]. Since

bi = j ind icates a bit fl ip in position z = j (recall
that bit p ositions, and thus leaves are identified with

integers 0, . . . , n − 1), we fl ip the valu e of V [j], add j

to Dz, and d epend ing on th e resulting value of V [j],
set th e n ex t en try in Fz to zero or on e.

Algorithm 1 The pseu docode for com pu ting Dx,Fx

from Dl,Fl,Dr,Fr.

1: i← j ← k ← 1
2 : Dl[dl + 1]← DR[dr + 1]←∞
3 : rep eat

4 : Px[k]← (Fr(i),Fl(j),k,0)
5 : if Dl[i] < Dr[j] then

6 : Dx[k]← Dl[i]; i← i + 1
7 : else if Dl[i] = Dr[j] then

8 : Dx[k]← Dl[i]; i← i + 1; j ← j + 1;
9 : else if Dl[i] > Dr[j] then

10 : Dx[k]← Dr[j]; j ← j + 1;
11: end if

12 : k ← k + 1;
13 : until i = dl + 1 and j = dr + 1
14 : dx ← k − 1 . dx is th e len gth of Px an d Dx

15 : Sort Px lexicograph ically on th e first tw o field s,
b y rad ix sort

16 : for k ← 2 to dx do

17 : if Px[k − 1][1] = Px[k][1] and Px[k − 1][2] =
Px[k][2] then

18 : Px[k][4]← Px[k − 1][4]
19 : else

2 0 : Px[k][4]← Px[k − 1][4] + 1
2 1: end if

2 2 : end for

2 3 : for k ← 1 to dx do

2 4 : Fx[Px[k][3]]← Px[k][4]
2 5 : end for

N ow, we describ e, for an internal node x of T with
children l and r, how to constru ct Dx,Fx from arrays

Dl,Dr,Fl,Fr; see Algorithm 1. The new sorted array
Dx[1, . . . ,dx] is built by merging th e arrays Dl and

Dr, eliminating any d u p licates, in time O(dl + dr) =
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O(dx). Simultan eously, w e create an aux iliary array
Px[0, . . . ,dx] th at records h ow th e merge step h as

proceeded; it con sists of quadruples of items. R efer
to lin e s 1–13. W e c learly h av e

Lem m a 1. The array Dx as co nstructed is co rrect.

The first two colum ns of the array Px contain pairs of

integers in the range 1, . . . ,dx with the property that

(Px[i][1],Px[i][2]) = (Px[j][1],Px[j][2]) iff vDx[i](x) =
vDx[j](x). T he third colu m n ju st n u m bers the row s of

Px con secu tively .

The array Px contains all the inform ation w e need,

in a sense, b u t not in the right ord er. At this p oint we

radix -sort Px according to the first tw o fields, in tw o

passes. As Px is of size dx and each of these fields is

a p ositiv e integer no larger than dx, this tak es O(dx)
time. In lines 16–22, w e nu mb er th e rearranged lines

of Px consec u tiv ely, ignoring d u p licate p airs in the

first tw o colu mns. T hese integers w ill b e u sed to fill

in Fx and are gu aranteed to b e in the range 1, . . . ,dx.

This tak es time O(dx). W e finally fill the array Fx

u sing the d ata in Px, as d etailed in lines 23–25. A

few m inu tes of contem p lation will conv ince the read er

th at th e follow in g le m m a h old s.

Lem m a 2. The array Fx co ntains integers in the

ran ge 1, . . . ,d with the property that Fx[i] = Fx[j] iff

vDx[i](x) = vDx[j](x).

Application Suppose one is interested in com puting

an arrangement of n simple shapes (such as disks,
triangles, or halfplanes) in R

2. T here are plenty of al-
gorithms, inc luding deterministic ones, that can solve
this problem in O(n2 log n) time for a variety of shapes.
But what if, in addition to the face structure of the

arrangement, one is interested in labeling the faces

with the bit vector indicating which of the objects
each face belongs to? Clearly, an explicitly stored
lab e lin g is too e x p e n siv e , re q u irin g Θ (n3) b its in th e

worst case. H owever, traversing the arrangement by
an Eulerian path of the face incidence graph allows

one to encode the bit vectors using single-bit fl ips

between consecutive vectors along the path. In par-
ticular using the algorithm described above, we can

detect which faces correspond to identical vectors and

thus are contained in identical sets of shapes. T he

process tak es O(n2 log n) time. An entirely analogous

process can process an arrangement of n objects in
any dimension, traversing k cells in O((n + k) log n)
time, provided adjacent cells diff er only in a single con-
tainment and an adjacency structure encoding local

b it d iff e re n c e s is av ailab le .
Note th at th e assu m p tion th at th e fi rst bit v ector

in the seq uence is all zeros can be dropped without
changing our algorithm. Also observe that our algo-
rithm can be used with slight modifi cations to de-
tect duplicates among bit vectors coming from several
sequ en ces—on e ju st n eed s to artificially con caten ate

the seq uences together by using dummy intermediate
vectors, if the number of seq uences is small. T his will
result in an additional O(n log n) cost per concate-
nation. A less brute-force approach to dealing with
multiple seq uences which results in a O(n) concatena-
tion cost will be described in the full version of this
p ap e r.

A geometric application with two sequences of bit

v e c tors w as p re se n te d in [1].
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Approx ima tion Alg orith ms for T wo O ptima l Loc a tion Prob lems in

S e n sor N e twork s

Alon Efra t Sa riel H a r-Peled J oseph S. B . Mitchell

Abstract

This paper stu d ies two problem s that arise in optim ization of sensor network s: F irst, we
d evise provable approx im ation schem es for locating a base station and constru c ting a network
am ong a set of sensors each of which has a d ata stream to g et to the base station. S u bject to
power constraints at the sensors, ou r g oal is to locate the base station and establish a network
in ord er to m ax im ize the lifespan of the network .

S econd , we stu d y optim al sensor placem ent problem s for q u ality coverag e of g iven d om ains
c lu ttered with obstac les. U sing line-of-site sensors, the g oal is to m inim ize the nu m ber of sensors
req u ired in ord er to have each point “ well covered ” ac cord ing to prec ise c riteria (e.g ., that each
point is seen by two sensors that form at least ang le α, or that each point is seen by three sensors
that form a triang le containing the point).

1 Intro d u c tio n

Consider a wireless sensor network with a larg e nu m ber of deployed sensors, each captu ring data
on a continu ou s basis. T he sensors m ay be captu ring video data, au dio data, environm ental data,
etc . T here is a base station that collects all of the data stream s from all of the sensors. E ach sensor
passes data packets along som e rou te in a network, from sensor to sensor, so that all data arrives
at the base station. S ince each sensor is g enerally powered by som e form of battery, the du ration
of the sensor node is determ ined in larg e part by its power dissipation rate and energ y provision.
A fu ndam ental issu e assoc iated with wireless sensor networks is m ax im iz ing their u sefu l lifetim e,
g iven their power constraints. T his can be sig nifi cantly aff ected by the location of the base station
as well as the forwarding protocols u sed (i.e. which sensor forwards packag es of which other sensor)
in establishing the network. H ou 1 has su g g ested the u se of the leng th of tim e u ntil the fi rst sensor
ex hau sts its battery as a defi nition of the lifespan of the system . In the paper, we show how to
fi nd a location of the base station su ch that the lifespan of the system is optim ized to within any
desired approx im ation bou nd. S pec ifi cally, we g ive a m ethod for locating the base station that
provably obtains a lifespan of at least (1 − ε) tim es that of the optim al lifespan, where ε > 0 is
any pre-determ ined fi x ed valu e. T he alg orithm is based on solving O(n ε−4 log 2(n / ε)) instances of
a linear prog ram m ing problem . It is sim ple and easy to im plem ent.

Th eorem 1.1 G iven a set of sensors S = {s1, . . . , sn} and a param eter ε > 0, one can com pu te

a location of the base station and a transm ission schem e su ch that the netw ork lifespan is at least

(1 − ε)to pt, w here to pt is the lifespan of an optim al transm ission schem e for S. T his algorithm s

requ ires M = O(n ε−4 log 2(n / ε)) preprocessing tim e, and needs to solve M instances of linear

program m ing.

1Tho m a s H o u, perso na l c o m m unic a tio n, 2 0 0 3 .
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We also stu d y another optim al location problem in sensor network s: H ow d oes one choose
locations of sensors for line-of-sig ht coverag e of a g iven reg ion, u nd er the assu m ption that a point is
only “ covered ” if it is “ well seen” ? We consid er two d efi nitions of “ well seen” : A point p is well seen
(or robu stly covered) if either (a) there are two sensors that see p, and these sensors are separated
by ang le at least α with respect to p; or (b) there are three sensors that see p and they form a
triang le that contains p. T he objective is to m inim ize the nu m ber of sensors to achieve robu st
coverag e. O u r resu lts on this problem g ive effi cient approx im ation alg orithm s for m inim iz ing the
nu m ber of sensors.

Th eorem 1.2 G iven P and Q as above, an angle α, and a grid Γ of edge-length δ inside P , w e

can fi nd a set G of sensors in P su ch that G 2-gu ards Q at angle α/2, and |G| = O(kopt log kopt),
w here kopt is the cardinality of smallest set of vertices of Γ that 2-gu ard Q at angle α. T he ru nning

time of the algorithm is O(nk4
opt log 2 n log m), w here m is the nu mber of vertices of Γ ∩ P .

Th eorem 1.3 D eciding if k sensors w ithin P su ffi ce to triangle-gu ard Q is N P -hard.

Th eorem 1.4 G iven P and Q as above, and a grid Γ of edge-length δ, w e can fi nd a set G of sensors

in P , that triangle-gu ard Q, w ith |G| = O(kopt log kopt), w here kopt is the cardinality of smallest set

of vertices of Γ that triangle-gu ard Q. T he ru nning time of the algorithm is O(nk2
opt log 2 n log m),

w here m is the nu mber of vertices of Γ ∩ P .

T his second problem is a variant of the classical art g allery problem , in which one is to place the
fewest sensors (“ g u ard s” ) to see all points of a certain g eom etric d om ain. Art g allery problem s have
been stu d ied ex tensively; see, e.g ., [K ei0 0 , U rr0 0 ] for recent su rveys. T he alg orithm ic problem of
com pu ting a m inim u m nu m ber of g u ard s is k nown to be N P -hard , even if the inpu t d om ain, D, is a
sim ple polyg on. T hu s, eff orts have concentrated on approx im ation alg orithm s for optim al g u ard ing
problem s. R ecently, researchers [E H 0 2, G L0 1 ] have applied set cover m ethod s that ex ploit fi niteness
of VC -d im ension. In particu lar, E frat and H ar-P eled [E H 0 2] obtain an O(log k∗)-approx im ation
alg orithm for g u ard ing a polyg on with vertex g u ard s, u sing tim e O(n(k∗)2 log 4 n), where k∗ is the
optim al nu m ber of vertex g u ard s. C heong et al. [C E H 0 4 ] have recently shown how to com pu te
k g u ard s in ord er to optim ize (approx im ately) the total area seen by the g u ard s. T he triang le-
g u ard ing coverag e problem we stu d y is related to recent work of S m ith and E vans [S E 0 3 ].
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OQPSR�TVU�W�X�U�UZY\[5]_^a`�PbU�^dc�e5Tgf=^hY\]ie�jlkVTgf�P2U%PbmCj�P�f=^on�X�P�]iTVPbUSTgfqp*ro[=f�Rs]_Pbkt[u^�PbR"c�]ieCv�kVP�j�U9wyx�`�P
U�e5kgX�^�TVeCfzY.e�]{[5f�U�|}P�]iTgf�mQY\[5]_^a`�PbU�^oc~e5Tgf5^�Y\]_eCj�kVTgf�P�U%PbmCj�P�f=^{n�X�P�]_T�PbUS]_Pbk�TVPbUdeCf�[QU�e5kgX�^�TVeCfzY.e�]�^a`�P
�D�����I�����b�*���M�\���*���9�K�l���\�M�S�������$���,�����������}���,��]iP�c�]ie�WbPbU�U�[�U%Pb^���eIY$�Sc�e=Ttf=^�U}Tgf{p� 8¡C¢h£¥¤�¡
UaX�Wb`d^a`�[u^�Y¦eC]�[§n�X�P�]i¨dkVTgf�P{©�eCf�P�W�[=fdP8ªoWbTVP�f=^�kV¨�]iP�c~eC]i^�^a`�P�Y«[5]i^8`�PbU�^¬c�e=Ttf=^�eIY­�;Y«]ieCj®©�w¯O°P�X�U�P
±³²5´_µ·¶ ^�e{`�T�R�P ±d´ kVe5m5¸¯¹0º¼»5� ¶ Y«[IWb^�eC]_U�w
½ �����M�9���¿¾sÀÂÁbÃ�Ä��ÆÅiÇo�sÈ�Å=ÉËÊ,Ä0Á�É0ÊÌp  %Í ¢�£Î¤qÏ2Ð8Å5Ê�ÁbÄ¦Ï5Ê,Ä Í Ð8Ï5ÊÒÑ%Ã�ÈMÓiÃiÈMÓiÅ�Ð8ÃbÁ8ÁbÃaÔ�Õ¯É0Ä0Ö ±�´¦×�µ
kVe5m ¸¯¹Ëºi» � ¶ ÁØÈ�Ï5Ð8Ã{Ï5Ê,Ô�Ä¦É0Ù�Ã{ÁbÚ�ÐbÖ°Ä0ÖCÏ5ÄDÇÛÅ=Ó{ÏSÜ9ÚCÃ9ÓaÝßÞ�É0Ê�Ã�©�Ä0ÖCÃ�ÇbÏ5Ó8Ä0ÖCÃbÁbÄàÈ�Å5É0Ê�Ä�Å_Ç³��ÇbÓiÅ5Ùá©�Ð8Ï5ÊzÑ%Ã
ÇbÅ5ÚCÊ,ÔdÉËÊ ±�´ ��kVe5m}��â × º¼ãuä·åI¹   »Ëã%æ¦ç ¶ Ä¦É0Ù�Ã Í Õ�ÖCÃ9Ó¼Ã���è × è¥� åI¹   »0ã�æIé
�¯�,�Ì���Ì¾;ê'Ã9Ä¯� Ñ�Ã�ÏdÁbÃ�Ä}ÅiÇ*�QÈ�Å5É0Ê�Ä0Á*É0Êßp�r{Ï5Ê�ÔdÞVÃ�Ä ´¦ë�ì%í�î9ìaï{¶ Ñ�Ã�ÏSÄ¦Ó8ÉðÈMÞVÃ9Ä�Õ¯É0Ä0Ö ë Ï§È�Å5É0Ê�Ä}Ï5Ê,Ô
í�î Ï�Þ�É0Ê�Ã�Ä0Ö�Ó¼Å=ÚFñuÖ ë ÁbÚ�ÐbÖoÄ0ÖCÏ=Ä�Ï5Þ0Þ=È�Å5É0Ê�Ä0Á¬É0Êo�®Ï5ÓiÃ*Õ¯É0Ä0ÖCÉ0ÊSÔ5É�ÁÛÄ¦Ï=Ê�Ð8Ã ï ÇbÓiÅ5Ù í�î é ê'Ã9ÄMò î Ô5Ã�Ê,Å5Ä¦Ã*Ä0Ö�Ã
ÈMÞVÏ5Ê,Ã�Å5ÓaÄ0Ö�Åañ5Å=Ê�Ï5Þ,Ä¦Å í�î Ï=Ä ë éôó Ç¬Ä0Ö�Ã�ÓiÃ�ÉgÁ�Ï�õßöS�÷ÁbÚCÐøÖ§Ä0Ö�Ï5Ä�ù ë õ$ù�ú ï Í Ä0ÖCÃ�ÊdÄ0ÖCÃôÈ�Å5É0Ê�Ä�ÅiÇ��qÇbÏ5Ó8Ä0ÖCÃbÁbÄ
ÇbÓ¼Å=Ù ë É0ÊSÄ0Ö�Ã�ÖCÏ5Þ Ç8Á«È�Ï5ÐaÃ�Ô5Ã¦û}Ê�Ã8Ô�ÑøÝ*ò î Ï=Ê�ÔdÐ8Å5Ê�Ä¦Ï5É0Ê�É0ÊCñüõ2É�Á*Ïhý�Ã�Ó8Ä¦Ãbþ{ÅiÇ�Ä0ÖCÃ�ÐaÅ=Ê�ý�Ãøþ�ÖCÚCÞ0ÞKÅiÇ�� é
�*�9����ÿ����'Pb^ �����aõ º ì õ æ ì��	����ì õ�

�Cw���Pb^���� ´ � ¶ v~P�^a`�P�WbeCf��=P��S`CX�kVk¯eIY���¡�kVPb^�������� ´ � ¶�� ò î ¡
[5f�RhWbeCf�U�TVR�P�] ^a`�P¬c�[5]_^���� ´ � ì8ëI¶ eIY���� ´ � ¶ Tgf{e�f�P�eIYK^a`�P�^¼|}e*`�[Ik Y¦Uac�[IWbPbU}R�P��Mf�PbRdv5¨oò î w��,eC]¯P�[IWb`
^�Pb^a]%[5`�PbR�]ieCf ë õ��Võ� �õ
!I¡K|�TV^a`dõ"� ì õ� ì õ
!{ö#��� ´ � ì8ëF¶ ¡�eCf�P{eIY¯õ�� ì õ� �e�]}õ
!*TVU*^a`�P�Y«[5]i^8`�PbU�^*c�e5Tgf=^*^�e ë w
��e�]�P�[IWÛ`ß^�Pb^8]�[5`�PbR�]ieCfßeIY}^a`�P�Y¦eC]�j ë õ���õ$!&%�¡D|�TV^a`dõ�� ì õ$!³ö#��� ´ � ìaëI¶ [=f�R'%Sv~PbTtf�m°[(�5P�]_^�P��SeIY}^a`�P
v�e�X�f�R�[5]i¨*)+�ÒeuY,�o¡IkVPb^�õ� �v�Pü^a`�P Y\[5]_^a`�PbU�^�c�e=Ttf=^¯^�e ë |�TV^a`�Tgf�^a`�[I^¯^%Pb^a]�[5`�PbR�]ie�f ´ U�PbP-�¯T�m,w/. ´ [ ¶�¶ w���Pb^
õ�0 v~P{^a`�P�Tgf5^%P�]iU�PbWb^�TVeCf�euY�^a`�P�kVTgf�P ë õ� �|üT�^8`S^8`�P{^a]iTg[5f�m5kVP�õ��Võ
!&%,w��'Pb^212�3%9õ�0 ��õ��Võ
!Fw�4�v�U�P�]5��Ttf�m
^a`�[I^Sù ë %�ù}è ï [5f�R"ù ë 1Fùôè768%
9:��ù ë õ � ù ì ù ë õ ! ù;��¡¯|}P�`�[	�5Pd^a`�[u^³^8`�PhY\[5]_^a`�PbU�^{c�e5Tgf=^o^%e ë Ua[u^�TVUiY.¨�Tgf�m
^a`�P{Wbe�f�R�T�^%T�e�f°Tgf�^a`�P�k�P�j�j{[dWbeCX�kVRÌeCf�kV¨°v�PheCf�P{eIY¯õ��}eC]}õ
!Fw��,eC]�P�[IWb`�^�Pb^a]�[=`�PbR�]ieCf�eIY}^a`�P�Y¦eC]�j
ë õ��<%/=I¡�|�TV^a`�õ���ö8��� ´ � ì8ëI¶ [5f�R>% ì =?�=P�]i^�TVWbPbU�eIY@)+�h¡CkVPb^�õ+ *v�P�^8`�P�Y\[5]_^a`�PbU�^�c~e5Tgf5^ü^�e ë |üT�^8`�TtfZ^a`�[I^
^�Pb^a]%[5`�PbR�]ieCf ´ U�PbP��¯TVm�wA. ´ v ¶�¶ wB�'Pb^�õ�0 v�P�^a`�P�Tgf=^�P�]iU�PbWb^�TVeCf eIY�^a`�P�kVTgf�P ë õ  |�TV^a`ß^a`�P�^a]_Tt[=f�m5kVP*õ � %/=Iw
��Pb^*1(�yõ��Võ 0  � %/=IwDC}kVP�[5]ikV¨5¡E1§T�U�|�TV^a`�TgfÌR�T�U%^a[5f�WbP ï Y«]ieCj ë w�x�`�X�U�¡�v=¨2[ZU�Tgj�TVkt[=]{[5]imCX�j§P�f5^�[IU
[5v~eF�=P�eCfh^a]iTg[5f�m5kVP ë õ"�G1I¡�^a`�P�Y«[5]i^a`�PbU%^¬c�e5Tgf=^}Y«]ieCj ë WbeCX�kVRSe�f�k�¨Sv~P¬õ��iw H

4�X�]'U�e5kgX�^�TVeCfAY.e�]�Wbe�j{c�X�^�Tgf�m�Y«[5]i^8`�PbU�^$c�e=Ttf=^�UDY\]_eCjqk�Tgf�P�U%PbmCj�P�f=^�UK[IkVU�e X�U%PbU$U�Tgj{c�kVTVWbTg[Ik�c�[5]i^%T�^%T�e�f�U�w
I ÁÛÉ0ÙüÈMÞVÉËÐ9ÉËÏ=Þ�È�Ï5ÓaÄ¦É0Ä¦É0Å5ÊKJ ´ � ¶ �L� ´ � º ìNM º ¶bìF´ � æ ìOM æ ¶bì	�����%ìF´ �QP ìOM P ¶ ��Y¦eC]�[hU�Pb^*��euYô��c�e=Ttf=^�U�Ttf p r T�U[QWbe5kVk�PbWb^%T�e�f�eIY³c�[ITg]iU�¡ü|¬`�P�]iP�^a`�P����5RðUd[5]iPSR�TVU<Sie5Tgf=^dUaX�v�U�Pb^�UdeIY³�Â|¬`�e=U�P�X�f�TVeCfqTVUS��¡¬[5f�R M ��T�U
[�^�Pb^8]�[5`�PbR�]ieCfÌWbe�f5^a[uTtf�Tgf�m2�Q��¡àY.eC]�T��U. ìWV�ì	�����iìWX w#��eC]�[Sm=TY�=P�f�U�Tgj{c�kVTVWbTg[Ik*c�[5]i^�TV^�TVeCfZJ ´ � ¶ ¡ ^a`�P
Ð�ÓiÅIÁ8ÁbÉËÊ�ñdÊ�Ú�Ù{Ñ�Ã9ÓoeuYü[dc�kg[5f�PdòQT�U�^a`�PhfCX�j�v�P�]AeIY�^�Pb^a]�[=`�PbR�]ieCf�U�eIY[J ´ � ¶ ^a`�[I^*òQTtf=^�P�]iU%PbWb^�U�wdx�`�P
W�]ie5U%U�Tgf�m�f�X�j³v~P�]�eIY\J ´ � ¶ TVU³^8`�Poj{[]��Tgj³X�j W�]ie5U�U%Ttf�m�fCX�j�v~P�]�e]�5P�]*[uk�k�c~e5U�U�Tgv�kVPSc�kg[5f�PbU�wdOQP{Ua[9¨
^a`�[I^}[�U�Tgj{c�kVTVWbTt[uk­c�[5]_^�TV^�TVeCf*J ´ � ¶ TVUKû}Ê�Ã�T Yôùð�Q�_ù�è V �Mâ X ¡uY.e�]�P��5P�]i¨8.*è^Tàè X w`_°[I^%eCX�U�P�a*b V	c c�]ie]�5PbR
^a`�P�Y¦e5kVkVeF|üTtf�md]iPbUaX�kV^�w

dfe:g�hjiQkml5i<lonNkmp<g�q:nWisrFnNkmtuhjnOvwvjxyiuz�r�r�{Nkmt<l5|�}�x�~A���*�NkmnN��t`���:�
�������W���W���	�
�u� lfrFnNkmt<�?lf��t`{N�,�:{���r	zFt<lfk@��pmhjlf�]pol����Q��hj��lfkmiuhjt�x�{N��e�l5��nWi�n�t � nOvwvjn�i5���:hjp�gFnNkm|�i<{N�/�/eQ�����N�W�����
�u� lfrFnNkmt<�?lf��t`{N����nWtug]l5�En�tuhjp5nOv,��pfhjlm�]p5loi5���Q��hj��lfkmiuhjt�x�{N��e�l5��nWiQnWt � nNvwvjnWi5���:hjp�gFnNkm|�i<{N�/�
e����W�N�W���	�
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�¯TVmCX�]iP*.�� x�`�P*c�e5Tgf=^�õ+ �Y«[5]i^a`�PbU�^ Y«]ieCj ë TVU�[2�=P�]i^�P��heIY@��� ´ � ìaëI¶ T Y ù ë õ� �ù�ú ï w

½ �����M�9����� �����
	'Å=Ó³Ï=Ê�Ý{ñ5É0ý�Ã9Ê�ÁbÃ�Ä��ÂÅiÇ³�q¢��iÔ5ÉËÙ�Ã9Ê�ÁbÉËÅ5Ê,Ï5Þ~È�Å5É0Ê�Ä0Á Í ¢�£ V Í Ï=Ê�Ô�Ï�È�Ï5ÓiÏ5Ù�Ã�Ä¦Ã�Ó X Í
.�è X è¥��â V Í Ï�û}Ê�Ã�ÁbÉ0Ù�È�Þ�É0Ð�É0Ï5Þ=È�Ï=ÓaÄ¦É0Ä¦ÉËÅ=Ê�Å_Ç�ÁÛÉ�
ÛÃ X Ï5Ê,ÔoÐ9Ó¼ÅuÁaÁbÉËÊ�ñ{Ê,ÚCÙ{Ñ%Ã�Ó ±�´�X º��Mºiã   ¶ ÃbþFÉ�ÁbÄ0Á éôó Ç X ÉgÁ
ÏhÐaÅ5Ê~ÁÛÄ¦Ï=Ê�Ä¯ÁbÚ�ÐbÖdÏhÁÛÉ0ÙüÈMÞVÉËÐ9ÉËÏ5Þ=È�Ï5ÓaÄ¦É0Ä¦É0Å5Ê�ÐaÏ5Ê°Ñ%Ã�ÐaÅ5Ê~ÁÛÄ¦Ó8Ú�Ð�Ä¦Ã8ÔoÉ0Ê ±d´ � ¶ Ä¦É0Ù�Ã{Õ¯ÉËÄ0Ö ±�´ � ¶ ÁØÈ�Ï5Ð8Ã é

I U�Tgj{c�kVTVWbTt[uk$c�[5]i^�TV^�TVeCf§W�[5f{v�P�X�U�PbR{^�e�WbeCf�U%^a]�X�Wb^�[=f*P8ªhWbT�P�f=^}R�[I^a[�U�^8]�X�Wb^aX�]iP5¡IW�[IkVkVPbRd[�È�Ï=ÓaÄ¦É0Ä¦ÉËÅ=Ê
Ä¦ÓiÃaÃ���^a`�P�]ie�e5^KeuYC^a`�P�c�[=]i^�TV^�TVeCf�^a]iPbP�`�[uU X WÛ`�TVkVR�]iP�f�¡5P�[uWÛ`�[IU%U�eCWbTg[I^%PbR�|�TV^a`*[}U%Ttj�c�k�P�� M ��Tgf*[}U�Tgj{c�kVTVWbTg[Ik
c�[5]i^%T�^%T�e�f'J ´ � ¶ ¡­[uU*|}PbkVkô[uU³[5f=¨�U�PbWbeCf�R�[5]i¨QTtf=Y¦eC]�j�[I^�TVeCf°]iPbkg[I^%PbR2^�eß^a`�PhP�f�Wbk�e=U�PbR¥c�e5Tgf=^�U�Pb^�¡¯[5f�R
v�PbTgf�m�^a`�P�]ie�e5^¯eIY$[�]iPbW�X�]iU�T �5PbkV¨hR�P��Mf�PbR�c�[=]i^�TV^�TVeCf�^a]iPbP�eCf§^a`�P¬c�e=Ttf=^�U%Pb^�^a`�[I^}v�PbkVeCf�m5U}^�e�^8`�T�U�f�e�R�P5w
½ �����M�9��������É0ý�Ã9Ê�Ï�ÁÛÃ9Ä��;ÅiÇ��§È�Å5É0Ê�Ä0Á�É0Ê�p�r Í ÉËÊ�� ´ ��� ã r ¶ Ä¦É0Ù³ÃüÅ5Ê�Ã�Ð8Ï5Ê�Ð8Å5Ê�ÁbÄ¦ÓaÚ�Ð�Ä�Ï�Ô5Ï=Ä¦Ï�ÁbÄ¦ÓaÚ�Ð�Ä¦Ú�ÓiÃ
ÅiÇ�ÁÛÉ�
bÃ�� ´ � � ã r ¶ ÁbÚCÐøÖoÄ0ÖCÏ5Ä Ä0ÖCÃ ÇÛÏ5Ó8Ä0ÖCÃøÁÛÄ,È�Å5ÉËÊ,Ä¯ÅiÇ¬��ÇbÓiÅ5Ù�ÏoÜ9ÚCÃ9ÓaÝ�Þ�É0Ê�Ã�ÁbÃiñ5Ù�Ã�Ê,Ä × Ð8Ï5ÊSÑ�Ã�ÓiÃiÈ�Å=ÓaÄ¦Ã8ÔoÉ0Ê
±�´ � æ%ã r���� ¶ Ä¦ÉËÙ�Ã Í ÇÛÅ5Ó�Ï=ÓÛÑøÉËÄ¦ÓiÏ5Ó8Ý��üú! é
�*�9����ÿ��8��Pb^³©#"�v�Ph^a`�P�k�Tgf�PdUaX�c�c~eC]i^�Tgf�m × w{x�`�P�Y«[5]i^8`�PbU�^*c�e5Tgf=^�Y«]ieCj × TVU�PbT�^8`�P�] ´ T ¶ ^8`�P�Y\[=]i^a`�PbU�^
c�e=Ttf=^ Y\]_eCj�© " eC] ´ TVT ¶ ^8`�P�Y«[5]i^a`�PbU%^�c�e5Tgf=^$õSöß�qY\]_eCj�eCf�PüeIYM^a`�P�P�f�R�c�e=Ttf=^�U}eIY × ¡�|�TV^a`�^a`�P�c�]ieCc�P�]_^¼¨
^a`�[I^�^a`�PSc�kg[5f�PßeC]i^a`�e=m5eCf�[Ik ^�e × [I^{^8`�[I^�P�f�R�c�e5Tgf=^�`�[IU × [5f�R°õ�e�f°R�T%$KP�]iP�f=^oU�TVR�PbU�w�x�`�PSc~e5Tgf5^
Y¦eC] ´ T ¶ W�[5fÌv�PheCv�^a[ITgf�PbR¥X�U�Tgf�m°��������w¯x�`�TVU�m5T �5PbU{X�U{[>�I[IkgX�P ï UaX�Wb`Q^a`�[I^³[uk�k�c~e5Tgf5^�U�Tgf�� [5]iP
|�TV^a`�Tgf�R�TVU�^a[=f�WbP ï Y\]_eCj ©#"�w�x�`�P{c�e5Tgf=^�Y¦eC] ´ T�T ¶ W�[5fß^a`�P�f�v�P�Y¦eCX�f�R°v5¨�c�P�]ØY¦eC]�j§Ttf�mß^i|�e�n�X�P�]iTVPbU�¡
P�[IWb`°e�f°[ßR�[I^a[dU%^a]�X�Wb^aX�]iPh[IU�U�e�WbTg[I^�PbRÌ|�TV^a`���� ´ � ìaë � ¶ ¡K|¬`�P�]iP ë ��¡AT[� . ì�V ¡�TVU§[=f°P�f�R�c~e5Tgf5^{euY × ¡
[5f�R#��� ´ � ì8ë � ¶ [5f�R ë r � �¬[5]iP{e�f�R�T%$'P�]_P�f5^�U�TVR�PbU�eIY�^a`�P{R�P��Mf�Tgf�m2c�kg[5f�PhY¦eC] ��� ´ � ì8ë � ¶ w8C}eCf�U%T�R�P�]^a`�P{n�X�P�]i¨ZY.eC] ��� ´ � ìaë º ¶ w�x�`�Poc�]ieCv�kVP�j T�U�^�eS]iP�c~eC]i^�^a`�P�Y«[5]i^8`�PbU�^ c~e5Tgf5^�õ�ö��y^%e ë º UaX�Wb`�^a`�[I^õdö8��� ´ � ìaë º ¶ [5f�R°ù õ ë º ù�ú ï ¡5T Y$UaX�Wb`o[�c~e5Tgf5^}P���T�U%^�U�wA��]ieCj3�'P�j{j{[*.=¡CTV^àY.e5kVkVeI|�U}^a`�[I^ eCf�P¬U8`�eCX�kVR
eCf�kV¨ÌWbeCf�U�TVR�P�]�^a`�P �=P�]i^�TVWbPbU{eIY���� ´ � ì8ë º ¶ wSO°P �M]iU�^�WbeCf�U�^a]%X�Wb^§[ßc�[5]i^�TV^�TVeCfÌ^8]iPbPov�[IU�PbR�e�f2[ �Mf�PU�Tgj{c�kVTVWbTg[Ik�c�[5]i^�TV^�TVeCfDJ ´ � ¶ w��'Pb^¬�'&*v~P*^a`�P�U8X�v�U�Pb^¬euY­��U�^%eC]iPbRd[I^¬[{f�e�R�P)({euY­^a`�P�^8]iPbP5¡�[5f�RSkVPb^ M &
v�P�^a`�P{^�Pb^a]%[5`�PbR�]ieCfßeIY�J ´ � ¶ ^a`�[I^�WbeCf=^a[ITgf�U��'&5w��,eC]�P�[IWb`�f�e�R�P*(�¡�|}P�WbeCj{c�X�^�P�^a`�P�WbeCf��=P�� `�X�kVk
���+&{eIYô�,&Cw�OQPo[IkVU�eSWbe�j{c�X�^�P{[5f�R°U�^%eC]iP{[dR�[I^8[hU�^a]�X�Wb^aX�]_P*Y¦eC]A^a`�P�UaX�v�U�Pb^*euYü�,&{WbeC]%]iPbUac�e�f�R�Ttf�m
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Computational Geometric Aspects of Musical Rhythm
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For our purpose a rhythm is represented as a
cyclic binary string. Consider the following three
12/8 time ternary rhythms expressed in box-like nota-
tion: [x . x . x . x . x . x .], [x . x . x x . x . x . x]
and [x . . . x x . . x x x .]. Here “x” denotes the
striking of a percussion instrument, and “.” denotes
a silence. It is intuitively clear that the first rhythm
is the most even (well spaced) of the three. Tradi-
tional rhythms have a tendency to exhibit such prop-
erties of evenness. Therefore mathematical measures
of evenness find application in the new field of math-
ematical ethnomusicology [2], [17], where they may
help to identify, if not explain, cultural preferences of
rhythms in traditional music.

Clough and Duthett [3] introduced the notion of
maximally even sets with respect to pitch scales rep-
resented on a circle. Block and Douthett [1] went fur-
ther by constructing several mathematical measures
of the amount of evenness contained in a scale. One of
their measures simply adds all the interval arc-lengths
(geodesics along the circle) determined by all pairs of
pitches in the scale. However, this measure is too
coarse to be useful for comparing rhythm timelines
such as those studied in [13] and [15]. Using inter-
val chord-lengths (as opposed to geodesic distances),
proposed by Block and Douthet [1], yields a more dis-
criminating measure, and is therefore a function that
receives more attention. In fact, this problem had
been investigated by Fejes Tóth [12] some forty years
earlier without the restriction of placing the points on
the circular lattice. He showed that the sum of the
pairwise distances determined by n points on a circle
is maximized when the points are the vertices of a
regular n-gon.

One may also examine the spectrum of the fre-
quencies with which all the durations are present
in a rhythm. In music theory this spectrum
is called the interval vector (or full-interval vec-
tor) [7]. For example, the interval vector for the clave
Son pattern [x . . x . . x . . . x . x . . .] is given by
[0,1,2,2,0,3,2,0].

∗This research was partially supported by NSERC and

FCAR. e-mail: godfried@cs.mcgill.ca

Examination of such rhythm histograms leads to
questions of interest in a variety of fields of en-
quiry: musicology, geometry, combinatorics, and
number theory. For example, David Locke [9]
has given musicological explanations for the char-
acterization of the Gahu bell pattern, given by
[x . . x . . x . . . x . . . x .], as “rhythmically po-
tent”, exhibiting a “tricky” quality, creating a “spi-
ralling effect”, causing “ambiguity of phrasing” lead-
ing to “aural illusions.” Comparing the full-interval
histogram of the Gahu pattern with the histograms of
other popular 4/4 time traditional clave-bell rhythms
leads to the observation that the Gahu is the only
pattern that has a histogram with a maximum height
of 2, and consisting of a single connected component
of occupied histogram cells.

In 1989 Paul Erdős [5] asked whether one could
find n points in the plane (no three on a line and no
four on a circle) so that for every i, i = 1, ...n − 1
there is a distance determined by these points that
occurs exactly i times. Solutions have been found for
2 ≤ n ≤ 8. A musical scale whose pitch intervals
are determined by points drawn on a circle, and that
has the property asked for by Erdős is known in mu-
sic theory as a deep scale [7]. We will transfer this
terminoly from the pitch domain to the time domain
and refer to cyclic rhythms with the Erdős property
as deep rhythms.

The analysis of cyclic rhythms suggests yet another
variant of the question asked by Erdős. From the
musicological point of view it is desirable (especially
in African timelines) not to allow empty semicircles.
Such constraints suggest the following problem. Is it
possible to have k points on a circular lattice of n

points so that for every i, i = ks, ks+1, ..., kf (s and
f are pre-specified) there is a geodesic distance that
occurs exactly i times, with the further restriction
that there is no empty semicircle?

These problems are closely related to the general
problem of reconstructing sets from interpoint dis-
tances: given a distance multiset, construct all point
sets that realize the distance multiset. This problem
has a long history in crystallography [8], and more
recently in DNA sequencing [11]. Two noncongruent
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sets of points are called homometric if the multisets
of their pairwise distances are the same [10].

The preceeding suggests that it would be desirable
to be able to eficiently generate rhythms that contain
prescribed histogram shapes, (such as deep rhythms)
and to find approximations when such rhythms do not
exist.

The problem of comparing two binary strings of the
same length with the same number of one’s suggests
an extremely simple edit operation called a swap. A
swap is an interchange of a one and a zero that are
adjacent to each other in the binary string. The swap
distance between two rhythms is the minimum num-
ber of swaps required to convert one rhythm to the
other.

Consider two n-bit (cyclic) binary strings, A and B,
represented on a circle (necklace instances). Let each
sequence have the same number k of 1’s. We are in-
terested in computing the necklace-swap-distance be-
tween A and B, i.e., the minimum number of swaps
needed to convert A to B, minimized over all rota-
tions of A. This distance may be computed in O(n2)
time by solving a linear time problem in each of the n

rotated positions. The open problem is whether the
O(n2) may be improved. In contrast, the necklace-

Hamming-distance may be computed in O(n log n)
time using the Fast Fourier Transform [6].

For additional discussion of the preceeding topics
the reader is referred to [13], [15], [14], [17], [16], [4],
and the references therein.
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Provably Better Moving Least Squares
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1 Introduction

We analyze a variant of the implicit moving least squares
(MLS) algorithm proposed by Shen, O’Brien, and
Shewchuk [4]. We show that under certain sampling
conditions the surface reconstructed by the MLS algorithm
is geometrically and topologically correct.

The input to the MLS algorithm is a set of sample points
S near a surface F , with approximate normals. For each
sample s ∈ S we define a linear point function that
approximates the signed distance function of F in the local
neighborhood of s. These functions are blended together
using Gaussian weight functions yielding a smooth function
I whose zero set U is the reconstructed surface. We prove
that I is a good approximation to the signed distance function
of the sampled surface F , and that U is homeomorphic to F
and geometrically close to F .

Shen, O’Brien, and Shewchuk originally proposed their
MLS construction with different weight functions for build-
ing manifold surfaces from polygon soup. Kolluri [3]
showed that for reconstructing surfaces from points sets, a
variant of this algorithm is geometrically and topologically
correct under uniform sampling conditions. In this work we
extend the analysis to handle adaptively sampled point data
in which the sampling density is proportional to the local
surface complexity. Our sampling requirements defined
in Section 2, are similar to the sampling requirements of
Delaunay-based algorithms like Crust [1].

2 Sampling Requirements

The local feature size (lfs) at a point p ∈ F is the distance
from p to the nearest point of the medial axis of F , as shown
in Figure 1. S is an ε-sample of the surface F if the distance
from any point p ∈ F to its closest sample in S is less than
ε lfs(p). Our results are valid for values of ε ≤ 0.01.

Amenta and Bern [1] show that the function lfs is 1-
Lipschitz. We extend the definition of the function lfs
beyond the points on the surface F . This extension is
used in defining our sampling requirements and our MLS
construction. We define the extended local feature size of a
point p as

e lfs(x) = m in
p∈F

{lfs(p) + d(x,p) − |φ(x)|} .

Here, φ(x) is the signed distance from x to the surface F and
d(x,p) is the distance between point x and point p. It is easy
to show that the function e lfs is 1-Lipschitz and reduces to
the function lfs for points on the surface.

Observation 1 For any two points, p and q, |e lfs(p) −
e lfs(q)| ≤ d(p,q). For any point p ∈ F , e lfs(p) = lfs(p).

Figure 1: A closed curve along with its medial axis. The
local feature size of p is the distance to the closest point x on
the medial axis.

Our sampling requirements allow for noisy data when the
amount of noise in the sample coordinates is small compared
to the sample spacing. We assume that for each sample
s, the distance to its closest surface point p ∈ F is less
than ε2e lfs(s). We also allow a small amount of noise in
the estimated sample normal. Consider a sample r with
estimated normal ~nr, as shown in Figure 1, whose closest
point in F is q with true normal ~nq. The angle between ~nr

and ~nq should be less than ε.
Our MLS construction builds the function I by blending

together functions associated with each sample point. Hence
arbitrary oversampling in one region of the surface can
distort the value of the function in other regions. To prohibit
such oversampling, we require that local changes in the
sampling density be bounded. Let α be the number of
samples inside a ball of radius ε e lfs(p) centered at a point
p. If α > 0, the number of samples inside a ball of radius
2ε e lfs(p ) at p is at most 8α.

3 Surface Definition

The input to the MLS algorithm is a set of sample points
S near the surface F . Each sample s ∈ S has an associated
vector ~ns that approximates the outside normal of the surface
near s.

We build a point function for each sample s ∈ S that
approximates the signed distance function of F near s. The
point function Ps(x) of sample point s with normal ~ns is the
signed distance from x to the tangent plane at s, Ps(x) =
(x− s) ·~ns. A weighted average of the point functions gives
the function I whose zero set is the implicit surface we seek.

I(x) =

∑
s∈S Ws(x)((x − s) · ~ns)

∑
s∈S Ws(x)

.

The weight functions are Gaussian functions modified by a
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Figure 2: (a)The function I at point x is mostly determined
by the point functions of the samples inside the thin shell
bounded by B1 and B2. (b) The offset curves Fin and Fo u t

of a curve F .

normalization factor associated with each sample point.

Ws(x) = e−‖x−si‖
2/e lfs2(x)/As.

The normalization factor associated with each sample point s
accounts for oversampling near s. Let α > 0 be the number
of samples inside a ball Bε of radius ε e lfs(s) centered at
sample s, including s itself. The value of As is given by

As =
α

ε3e lfs3(s)
.

4 Results

Consider a point x whose closest point on the surface is
p as shown in Figure 2(a). Let B1(x) be a ball of radius
|φ(x)| centered at x. Consider a second ball B2(x), that is
slightly bigger than B1(x), also centered at x. The radius
of B2(x) is |φ(x)| + τ e lfs(x). Here τ = 2ε is a constant
that depends on the sampling density. Our results are based
on the observation that the value of the function at point x
is mostly determined by the samples inside the thin shell
bounded by B1(x) and B2(x).

Let Fo u t be the τ -offset surface outside of F that is
obtained by moving each point p ∈ F along the normal
at p by a distance τ · e lfs(p). Similarly, let Fin be the τ -
offset surface inside of F as shown in Figure 2(b). The τ -
neighborhood is the region bounded by the inside and the
outside offset surfaces. Our first geometric result is that the
zero set U of I is inside the τ -neighborhood of F .

Theorem 2 For each point x outside Fo u t , I(x) > 0 and for
each point y inside Fin , I(y) < 0.

Theorem 2 proves that the function I does not have any
spurious zero crossings far away from the sample points. Our
second geometric result is about the gradient of I at points
in the zero set of I .

Theorem 3 Let x be a point in the τ -neighborhood of F and
let p be the point on F closest to x. Let ~n be the normal of p.
Then, ~n · ∇I(x) > 0.

Theorem 3 proves that the gradient can never be zero inside
the τ -neighborhood. From Theorem 2, the zero set of I is

Figure 3: MLS reconstruction of the Stanford Dragon model
from raw data.

inside the τ -neighborhood of F . Hence, from the implicit
function theorem [2], zero is a regular value of I and the
zero set U is a compact, two-dimensional manifold.

We use these geometric results to define a homeomor-
phism between F and U . As F and U are compact, a one-
to-one, onto, and continuous function from U to F defines a
homeomorphism.
Definition: Let Γ : IR3 → F map each point q ∈ IR3 to its
closest point on F .

Theorem 4 The restriction of Γ to U defines a homeomor-
phism from U to F .

5 Discussion

Our sampling requirement that ε ≤ 0.01 is probably an
artifact of our proof technique. The MLS algorithm works
quite well on data obtained from laser range, for which ε is
much larger than 0.01 as shown in Figure 3.

Our definition of the MLS surface requires knowledge of
the e lfs(x), function which is unknown. In our analysis,
e lfs can be replaced by any 1-Lipschitz function f such that
f(x) ≤ e lfs(x) at all points x, and the input sample is an
εf -sample for ε ≤ 0.01. We can relax our requirements and
assume that the e lfs function is known only at the sample
points. A 1-Lipschitz function function f(x) can now be
defined as

f(x) = m in
s∈S

{d(x, s) + elfs(s) − d(x, n n (x))},

where n n (x) is the sample nearest x in S.
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Figure 1: Left, an isosurface of the UNC Head (109×256×256 MRI) shows mostly the skull: the contour tree is unmanageable (1,573,373
edges). Right, contour surfaces chosen using a simplified contour tree. (Annotation and colour chosen to emphasize the structure of the data.)

Abstract

The contour tree, an abstraction of a scalar field that encodes
the nesting relationships of isosurfaces, has several potential ap-
plications in scientific and medical visualization, but noise in
experimentally-acquired data results in unmanageably large trees.
We attach geometric properties of the contours to the branches of
the tree and apply simplification by persistence to reduce the size
of contour trees while preserving important features of the scalar
field.

Keywords: Isosurfaces, contour trees, topological simplification

1 Introduction

The contour tree is a topological abstraction of a scalar field used in
scientific and medical visualization [BPS97; vKvOB+97; PCM02;
CSvdP04]. It represents changes in isosurface connectivity. In this
paper, we simplify the contour tree using geometric properties of
contours, permitting online simplification of the contour tree.

Figure 1 shows a conventional isosurface and a flexible isosur-
face [CS03] extracted from the same data set after contour tree sim-
plification. On the left, we see that the outermost surface (the skull)
occludes other surfaces, making it difficult to study structures in-
side the head, and the contour tree has too many edges to be useful.
On the right, we see the result of using the simplified contour tree
as an interface tool to enable a user to explore, color, and annotate
the contours – the structures inside the head can be seen in relation
to each other.

2 Related Work

The contour tree, a special case the Reeb graph [Ree46], is the re-
sult of contracting each contour in a scalar field to a single point;
it tracks how contours, connected components of isosurfaces of a
data set, appear, merge, split, and vanish as we vary the chosen iso-
value. Efficient algorithms for constructing the contour tree have

been reported for various meshes and interpolants [vKvOB+97;
CSA03; PCM02; CLLR02; TNTF04]; the contour tree has applica-
tions ranging from fast isosurface extraction [vKvOB+97; CS03]
and volume rendering [TNTF04] to mesh simplification, abstract
representation of scalar fields [BR63; BPS97] and contour manip-
ulation [CS03]. Unfortunately, noise in the input data can create
many new contours by creating local minima and maxima. For
noisy experimentally-acquired data such as the UNC head data set
shown in Figure 1, contour trees commonly have millions of edges
– too many to serve as a visual representation for the input data.

To simplify the contour tree, we would like to assign an importance
to each edge and collapse edges of lower importance. This is a sim-
ple case of the ideas of topological persistence [EHZ03; ELZ02;
BEHP03] applied to trees. Two works have applied persistence to
the isovalues: [HSKK01] simplify the Reeb graph using hierarchi-
cal quantization of the data values, which can introduce errors at
edges that span the quantization boundaries, and [TNTF04] sim-
plify the contour tree using data values. We allow any geometric
property to guide simplification (and are most efficient with decom-
posable properties, such as volume and surface area.)

3 Contour Tree Simplification

Given a contour tree and a scalar field, we simplify the contour tree
with graph operators, then reflect the simplication back to the input
data or use the simplified contour tree directly to extract individual
contours from the simplified data set.

To compute geometric measures for individual contours, we re-
place the single isovalued sweep in [BPS97] with multiple separate
sweeps of individual contours corresponding to sweeping individ-
ual points through the tree. Doing this requires combining partial
sweep results whenever a saddle in the tree is swept past. In three
dimensions, we can compute surface area, volume or hypervolume:
isovalue integrated inside the contour.

To simplify the contour tree, we then choose a leaf edge that cor-
responds to contours for which the chosen geometric property is
small and prune the leaf from the tree. By removing only leaves,
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we guarantee that the structure remains a tree and corresponds to a
subregion of the scalar field in which isovalued contour sweeps can
still be performed without discontinuous jumps.

Leaf pruning can result in a redundant vertex in the tree, as in Fig-
ure 2. We remove such vertices with no loss of topological infor-
mation in the tree. Since there is no geometric cost to doing so, we
prefer these vertex simplications where available and also prefer
leaf prunes that maximize the number of future vertex simplifica-
tions.

Removing a leaf of the tree corresponds to flattening a local ex-
tremum of the data set as shown in Figure 2. By minimizing the
geometric cost of our simplification, we are able to achieve simpli-
fication of the tree by 4 orders of magnitude without causing signifi-
cant errors in the underlying field being represented, and preserving
details of the contours that remain.
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4 Results and Discussion

We have tested this form of simplification on a variety of data sets
using the flexible isosurface interface [CS03]. In Figure 1, we show
a typical result using hypervolume as the importance measure. Con-
tours for the skull were not selected because they occlude the inter-
nal organs.
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lungs
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brain

windpipe?
shoulder
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Figure 3: A Pregnant Rat MRI (240×256×256). Despite low qual-
ity data, simplifying the contour tree from 2,943,748 to 125 edges
allows identification of several anatomical features.

Similarly, Figure 3 shows the result of a similar exploration of a
240× 256× 256, low-quality MRI scan of a rat from the Whole
Frog Project at http://www-itg.lbl.gov/ITG.hm.pg.
docs/Whole.Frog/Whole.Frog.html. Again, simplifica-
tion reduces the contour tree to a useful size. After using the
dot tool from the graphviz package (http://www.research.
att.com/sw/tools/graphviz/) to lay out the contour tree,
these images took less than 10 minutes to explore and annotate. The
result is purely a function of the topology of the isosurfaces of the
input data, and uses no special constants.

5 Conclusions and Future Work

We have presented a novel algorithm for the simplification of con-
tour trees based on local geometric measures. The algorithm is on-
line, meaning that simplifications can be done and undone at any
time. This addresses the scalability problems of the contour tree
in exploratory visualization of 3D scalar fields. The simplification
can also be reflected back onto the input data to produce an on-line
simplified scalar field. The algorithm is driven by local geometric
measures such as area and volume, which make the simplifications
meaningful. Moreover, the simplifications can be tailored to a par-
ticular application or data set.

Future directions of research include extension to vectors of geo-
metric measures, user-directed local simplification of the contour
tree, utilization of the contour tree as a query structure for geomet-
ric properties, application of similar methods to volume rendering
and to non-isovalue segmentation, extension to time-varying data
sets, parallelization and improvements to contour tree layout algo-
rithms.
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Parallel Guaranteed Quality Planar Delaunay

Mesh Generation by Concurrent Point Insertion∗

Extended Abstract

Andrey N. Chernikov and Nikos P. Chrisochoides

Computer Science Department

College of William and Mary

Williamsburg, VA 23185

Abstract We develop a theoretical framework for
constructing parallel guaranteed quality Delaunay planar
meshes using commercial off-the shelf software (COTS).
We call two points Delaunay-independent if they can be in-
serted concurrently without destroying the conformity and
Delaunay properties of the mesh. First, we present a suf-
ficient condition of Delaunay-independence. It is based on
the distance between points, can be verified very efficiently
and used in practice. Second, we show that a simple block
mesh decomposition can be utilized in order to guarantee a-
priori Delaunay-independence of points in certain regions.
Third, we derive an expression which relates three mesh
quality and size parameters that allow to conduct the pre-
processing step of our approach using a sequential Delau-
nay refinement algorithm. We conclude with our current
work in progress that includes extending the presented ap-
proach to generate nonuniform graded meshes.

Introduction

Nave, Chrisochoides, and Chew [7] presented a practical
provably-good parallel mesh refinement algorithm for polyhe-
dral domains. The approach in [7], due to absence of sequential
code reuse, as well as intensive unpredictable communication
and setbacks, is labor intensive. In this paper, we develop an
approach which allows to use COTS, requires only structured
bulk communication, and eliminates setbacks by ensuring that
the inserted points are Delaunay-independent.

Linardakis and Chrisochoides [6] described a Parallel Do-
main Decoupling Delaunay method for 2-dimensional domains,
which is capable of leveraging the serial meshing codes. How-
ever, it is based on the Medial Axis which is very expensive and
difficult to construct for 3-dimensional geometries. The ap-
proach developed in the present work is domain decomposition
independent, i.e. it does not require an explicit construction of
internal boundaries.

Blelloch, Hardwick, Miller, and Talmor [2] describe a divide-
and-conquer projection-based algorithm for constructing De-
launay triangulations of pre-defined point sets in parallel. Our
goal, though, is to refine an existing mesh by inserting triangle
circumcenters, i.e., the set of points in the final mesh is not
known in advance.

Kadow in [5] extended [2] for parallel mesh generation. The
principal difference between [7] and [5] is that in [5] the need

∗This work was supported by NSF grants: CCR-0049086, ACI-

0085969, EIA-9972853, EIA-0203974, and ACI-0312980

to construct an initial mesh sequentially is eliminated.
Edelsbrunner and Guoy [4] define the points x and y as in-

dependent if the closures of their prestars (or cavities [7]) are
disjoint. We start with proving a similar condition of point
independence [3]. Our formulation is less restrictive: it allows
the cavities to share a point. However, computing the cavities
and their intersections for all candidate points is very expen-
sive. That is why we do not use coloring methods that are
based on the cavity graphs and we prove a theorem, which al-
lows to use only the distance between the points for checking
their Delaunay-independence. The minimum separation dis-
tance argument in [4] is used to derive the upper bound on the
number of inserted vertices and prove termination, but not to
ensure point independence.

Spielman, Teng, and Üngör [9] presented the first theoreti-

cal analysis of the complexity of parallel Delaunay refinement

algorithms. However, the assumption is that the global mesh

is completely retriangulated each time a set of independent

points is inserted [11]. In [10] the authors developed a more

practical algorithm which takes O (logm) time (i.e. number of

parallel iterations) using m processors, where m is the size of

the output. In contrast, our approach [3] uses only four par-

allel refinement iterations with a fixed number of processors,

where each iteration on a single processor is performed by a

sequential mesher [8]. The present work is an extension of the

work we presented in [3].

The Theoretical Framework

Sequential Delaunay refinement algorithms are based on in-
serting circumcenters of triangles which violate the required
bounds, e.g. the upper bound ρ̄ on circumradius-to-shortest
edge ratio, and the upper bound ∆̄ on triangle area. Let the
cavity CM(p) of point p with respect to mesh M be the set of
triangles in M, whose open circumdisks include p. We expect
our parallel Delaunay refinement algorithm to insert multiple
circumcenters concurrently in such a way that at every itera-
tion the mesh will be both conformal and Delaunay. Figure 1
illustrates how the concurrently inserted points can violate one
of these conditions.

Theorem 1 Let r̄ be the upper bound on triangle circumradius

in the mesh and pi, pj ∈ Ω ⊂ R
2. Then if ‖pi − pj‖ ≥ 4r̄, then

independent insertion of pi and pj will result in a mesh which

is both conformal and Delaunay.

To show that Theorem 1 is applicable throughout the
run of the algorithm, we prove that the execution of the
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Figure 1: (a) If 4p3p6p7 ∈ C(p8) ∩ C(p9), then concurrent
insertion of p8 and p9 yields a non-conformal mesh. Solid lines
represent edges of the initial triangulation, and dashed lines —
edges created by the insertion of p8 and p9. Note that the inter-
section of edges p8p6 and p9p7 creates a non-conformity. (b) If
edge p3p6 is shared by C(p8) = {4p1p2p7, 4p2p3p7, 4p3p6p7}
and C(p10) = {4p3p5p6, 4p3p4p5}, the new triangle 4p3p10p6

can have point p8 inside its circumdisk, thus, violating the De-
launay property.

# of Pipe with holes Unit square
pro- Time, # of elmnts, Time, # of elmnts,

cessors sec. ×106 sec. ×106

4 179.1 14.6 293.7 23.8

64 273.6 233.3 300.1 470.7

121 212.7 441.1 293.7 873.5

Table 1: Scaled workload, the area bound is inversely propor-
tional to the number of processors.

Bowyer/Watson kernel [7], either sequentially or in parallel,
does not violate the condition that r̄ is the upper bound on
triangle circumradius in the entire mesh.

Theorem 2 The condition that r̄ is the upper bound on trian-

gle circumradius in the entire mesh holds both before and after

the insertion of a point.

In order not to check the independence condition for every
pair of candidate points, we utilize a coarse-grained domain
decomposition scheme. A coarse uniform lattice is overlapped
over the triangulation domain in such a way that any pair of
points in non-adjacent cells are guaranteed to be no less that
4r̄ apart. To enforce the r̄ circumradius bound in the mesh we
derive the following relation which allows to use the standard
sequential Delaunay refinement algorithms for preprocessing:

Theorem 3 If ρ̄ and ∆̄ are upper bounds on triangle

circumradius-to-shortest edge ratio and area, respectively, then

r̄ = 2(ρ̄)3/2
√
∆̄ is an upper bound on triangle circumradius.

Some results for shared and distributed memory implemen-

tations1 are shown in Tables 1 and 2. Table 1 also indicates

that there is potential for improvement by using the Load Bal-

ancing Library [1].

1This work was performed using computational facilities at the

College of William and Mary which were enabled by grants from

Sun Microsystems, the National Science Foundation, and Virginia’s

Commonwealth Technology Research Fund.

# of Time, sec. Time, sec. # of elmnts,
processors MPI OpenMP ×106

4 220.3 214.1 14.6

Table 2: Pipe cross-section, distributed (MPI) and shared
(OpenMP) memory implementations.

Figure 2: Graded mesh of Jonathan Shewchuk’s key. The
parallel refinement is guided by a quadtree.

Conclusions and Work In Progress

The approach we developed allows the use of sequential
COTS for guaranteed quality parallel meshing.

Currently, we are working on extending our results to graded

meshes like the one shown in Fig. 2 by using a quadtree instead

of a uniform lattice, and to 3 dimensions.
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Tightening: Curvature-Limiting Morphological Simplification

Jason Williams and Jarek Rossignac

Given a planar set S of arbitrary topology and a radius r, we define an r-tightening of S,

which is a set that has a radius of curvature everywhere greater than or equal to r and that

only differs from S in a morphologically-defined tolerance zone. This zone, which we

call the mortar, contains only the details of S, such as high curvature portions of its

boundary, thin gaps and constrictions, and small holes and connected components. We

describe how to approximately compute r-tightenings for shapes represented as binary

images using constrained, level set curvature flow.

Our work addresses a formulation of the shape smoothing problem different from

those given in most prior art. The energy minimization-based fairing methods in the

CAD/CAM literature (such as [3]) and the various polygon mesh smoothing techniques

in the graphics literature (such as [2]) typically do not guarantee a bound on curvature or

confine shape changes to a tolerance zone like the mortar.

The mortar, which we introduced in [7], is defined in terms of the morphological

operations of rounding and filleting, which are described in detail in [4]. S rounded by r,

denoted Rr(S), is the union of disks of radius r  contained in S, while S filleted by r,

denoted Fr(S), is the complement of the union of disks contained in the complement of S.

The mortar is Fr(S)-Rr(S). It is empty away from thin and high-curvature regions of S,

and around those regions it is a subset of all points within a distance r of the boundary of

S.

We define a simple closed curve C lying in a set T as tight with respect to T if it

locally minimizes length, so that there exists a ! such that for all t  and all " ! !,

d(C(t),C(t+")) = ", where d(A,B) is the length of the shortest path connecting A and B in

T and C is parameterized by arclength. We define a point on the boundary of a shape as

concave if the line segment connecting the intersections of a small circle centered on the

point with the boundary lies completely outside the shape. Tight loops through a set

consist of concave portions of its boundary connected by tangent line segments. Because

concave portions of the boundary of the mortar have a radius of curvature greater than or

equal to r, if we define an r-tightening of S as a set T, Rr(S) #  T #  Fr(S), such that the

bounding loops of T are tight with respect to the mortar of S, it follows that the boundary

of an r-tightening also has a radius of curvature greater than or equal to r.

When Rr(S) and the complement of Fr(S) each consist of a single connected

component, the tightening is unique, and its boundary is the shortest loop around Rr(S)

lying in Fr(S). In this case the tightening corresponds to the relative convex hull or

minimum perimeter polygon [6] of Rr(S) in Fr(S). When Rr(S) and Fr(S) have more

complex topologies, there may be several different tightenings, each of which may have

holes and multiple connected components

We conjecture that for shapes of arbitrary topology represented as binary images,

level-set curvature flow [5] constrained to the mortar always converges to a tightening,

which includes as a corollary that a tightening always exists. In our implementation of

curvature flow, we initialize the level set function $  to be the signed Euclidean distance

to the boundary of the core of the input shape, approximately computed using
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DanielssonÕs vector propagation algorithm [1], which we also use for implementing the

morphological operations. At each iteration, we compute $t = -F |%$|, where F is the

velocity of the level set, which is equal to the curvature in the mortar and zero outside the

mortar. The curvature is given by

! = " #
"$

"$
=
$ xx$ y

2
% 2$ x$ y$ xy + $ yy$ x

2

$ x

2
+ $ y

2( )
3 / 2

Where |%$| = ($x
2+$y

2)1/2, and the partial derivatives are computed using finite

differences. We then compute $ (t+"t, x, y) = $ (t, x, y) + "t ¥ $t(t, x, y), where "t is

inversely proportional to the maximum value of F at time t, so that the level set crosses at

most one pixel each iteration. During most iterations, we only update $ in a narrow band

of pixels around the zero level set.

Curvature flow converges slowly where the radius of curvature spans several pixels.

We therefore downsample the image representation of the core by a factor of two until r

corresponds to 1-2 pixels. We perform the flow at this coarse resolution, then iteratively

upsample by a factor of two and re-perform the flow. We find we need less than 100

iterations at each level of resolution. We anticipate adapting this technique to generate

three-dimensional results using mean curvature flow.
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Compact Data Representations and their

Applications

Moses Charikar

Princeton University

Several algorithmic techniques have been devised recently to deal with large
volumes of data. At the heart of many of these techniques are ingenious schemes
to represent data compactly. This talk will present some constructions of such
compact representation schemes (also referred to as sketches) for estimating dis-
tances between sets, vectors, and distributions on an underlying metric (where
distance is measured by the Earth Mover Distance (EMD)). The construction
of these compact representation schemes is motivated by techniques used in
approximation algorithms to round solutions of LP and SDP relaxations for
optimization problems. There are interesting connections between such sketch-
ing methods and low distortion embeddings of metric spaces into `1. Such
compact representation directly lead to efficient approximate nearest neighbor
search algorithms. We will also see how such schemes lead to efficient, one-pass
algorithms for processing large volumes of data (streaming algorithms).

Finally, I will talk about some recent work applying these ideas to designing
compact data structures for content-based image retrieval systems. The main
challenge here is to achieve high-quality similarity searches while using very
compact meta-data. We adapt the ideas from the sketch constructions for EMD,
as well as other ideas from embeddings of normed spaces to produce compact
sketches for images. I will discuss results from a prototype implementation
on a database with 10,000 images. Our results show that our method can
achieve more effective similarity searches than previous approaches with meta-
data significantly smaller than previous systems.

The work on content-based image retrieval is joint work with Qin Lv and
Kai Li at Princeton.
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NEARPT3 — Nearest Point Query in E3 with a Uniform Grid

[Extended Abstract]

W. Randolph Franklin
ECSE Dept, 6026 JEC, RPI, Troy NY 12180

geom@wrfranklin.org, http://wrfranklin.org

1. INTRODUCTION
We present Ne a r p t3, an algorithm and prelim inary im ple-
m entation to preprocess a large set of fix ed points and then
perform nearest point q ueries against them . With fix ed and
q uery points draw n from the sam e distribution, Ne a r p t3’s
ex pected preprocessing and q uery tim e are Θ (N ), w ith a
v ery sm all constant factor. Ne a r p t3, designed for large
datasets, has been tested on the largest datasets in the G eor-
gia T ech L arge G eom etric Models A rchiv e, [7]. T herefore,
processing tens of m illions of points is q uite feasible.

T he prior art inc ludes v arious data structures and algo-
rithm s for v ariants of nearest neighbor searching. T he cost
of a V oronoi diagram , [6], in E3 is data dependent, am d
runs from Ω (N log N ) to O(N2) in tim e and space for pre-
processing, w ith each q uery costing θ(log N ). R ange trees,
[6], cost θ(N log N ) tim e to preprocess, w ith each q uery also
costing θ(log N ). A N N (A pprox im ate N earest N eighbors),
[2], is a C ++ library for approx im ate and ex act nearest
neighbor searching in Ed, allow ing a v ariety of m etric s, im -
plem ented w ith sev eral diff erent data structures, based on
k d-trees and box -decom position trees. A ll these algorithm s
and data structures are m ore general, hence bigger, than
Ne a r p t3, w hich is optim ized spec ifically for the L2 m etric
in E3, although its ideas w ould generalize.

Ne a r p t3 appears to be the only m ethod that enthusias-
tically rejects hierarchical data structures and search tech-
niq ues. T rees and subdiv ision searching are m ore robust
against adv ersarially chosen input. H ow ev er, w e believ e,
based on tests on real data, that they are often suboptim al in
practice. T his is true ev en w hen the real data is m oderately
unev enly distributed. T he ex trem e data unev enness that
w ould destroy Ne a r p t3’s perform ance w ould also force hi-
erarchical data structures to hav e m any lev els. In that case,
w here the hierarchies w ould then be faster than Ne a r p t3,
though not fast, a shallow hierarchy w ould perhaps be the
least slow .

Ne a r p t3 has three stages, as follow s. T he data structure is
a uniform grid, [1, 4].

Prep rep ro cess: T his step, w hich does not depend on the
data, need be perform ed only once. H ence it is ex -
c luded from the tim e statistic s, just as the com pilation
tim e is also ex c luded. Indeed, this prepreprocessing
could be forced into the C ++ com pilation step us-
ing the tem plate spec ialization fac ilities, though that

w ould be silly .

1. G enerate the coordinates (x,y,z) of all grid cells
w ith 0 ≤ x ≤ y ≤ z ≤ R for som e fix ed R.

2. Sort them by
p

x2 + y2 + z2.

3. P ass dow n the list in order. F or each cell c1, find
the last cell, c2, w hose c losest point to the origin
is at least as c lose as the farthest point of c1. C all
c2 the sto p cell.

Since the stop cells are m onotonically increasing,
all this req uires only one pass dow n the cell list.

T he point is that if a point has been found in c1,
w e hav e to continue searching through c2 to be
sure of finding any c loser points.

4. Write the sorted list of cells and stop cells to a
file.

Prep ro cess: H ere the fix ed points are built into the data
structure.

1. C om pute a uniform grid resolution, G from the
num ber of fix ed points, Nf or get it from the user.
A reasonable v alue is G = r 3

p

Nf , for 1/2 ≤ r ≤

2.

2. A llocate a uniform grid w ith one w ord per cell, to
store a count of the num ber of points in each cell.

3. R ead the fix ed points, determ ine w hich cell of the
uniform grid each w ould fall in, and update the
counts.

4. A llocate a ragged array for the uniform grid, w ith
just enough space in each cell for the points in
that cell.

A ragged array contains storage for the points
plus a dope v ector pointing to the first point of
each cell. T he total v ariable storage is one w ord
per cell, plus the storage for the points.

5. P rocess the fix ed points again, com puting for a
second tim e the cell that each falls into. T his
tim e, store each point in its proper cell.

T he goal is to m inim ize both the storage used
and the num ber of storage reallocations. Storage
reallocations becom e espec ially costly as the pro-
gram ’s m em ory w ork ing set approaches the com -
puter’s av ailable real m em ory .

A possible alternativ e w ould be to use a link ed
list for the points in each cell. H ow ev er, the space
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used for the pointers would be significant, and the
points in each cell would be scattered throughout
the memory, which might reduce the cache per-
formance.

A nother alternativ e would be to use a C + + ST L
v ector, which reallocates its storage as it grows.
O ur ex perience finds this to be v ery suboptimal.

Qu ery : T his reports the c losest fix ed point to a q uery
point.

1. Determine which cell, c, contains the q uery point.

2. U sing the sorted cell list computed in the prepre-
processing step, spiral out from c until a cell with
at least one point is found. O ften this is c itself.

For each cell with coordinates (x ,y,z) in the
sorted cell list, up to 47 other reflected and ro-
tated cells are deriv ed, such as (−x , z,y). If any
ordinate is zero, or any two are eq ual, there will
be fewer other cells.

It would be possible to do this reflection, rota-
tion, and duplicate deletion in the prepreprocess-
ing stage. T his would cause a much larger sort
cell list. H owev er it would reduce the q uery time
because that code would hav e fewer conditionals,
which should mak e it more optimizable.

3. C ontinue spiralling out until c’s stop cell to find
any c loser points, if one ex ists.

T his spiralling process is conserv ativ e since it ig-
nores the location of the q uery point inside c.

O n the av erage 200 cells are searched for each
q uery, but check ing each cell is v ery fast.

2. TESTS
Ne a r p t3’s performance is data dependent. A n improper
choice of input, such as q uery points that are v ery far from
all the fix ed points, will be intolerably slow. N ev ertheless,
all the data sets tested so far perform q uite well, inc luding
these:

D ata

set

n ame

S o u rce

#

fi x ed

p o in ts

#

q u eries

C PU

time,

secs

Bunny G IT 17973 17974 1.9
Bone6 G IT 284818 284818 28
Dragon G IT 218882 218883 21
H and G IT 163661 163662 16
U niform
random

generated 1M 1M 128

T he env ironment is a 2002-v intage IBM T 30 T hink pad lap-
top computer with 768 MB of memory, a 1600 MH z P entium
4 Mobile C P U , and Intel’s icpc 8.1 C + + compiler, with all
optimizations enabled. T he times inc lude reading the data
and writing the results. T hese ex periments also v alidate
that the cost is linear. T he preprocessing cost is Θ (N ).
E ach q uery may cost O(N ), but typically costs Θ (1).

Ne a r p t3’s cost is aff ected by the grid resolution, howev er
v alues within a factor of two of the optimum typically change
the time less than a factor of 2.

3. EXTENSIONS
Ne a r p t3 could return approx imate nearest matches in
much less time since the spiral search could stop sooner.
In Ed for other d, the cost of searching is ex ponential in d,
as for any search procedure.

Ne a r p t2 is a simplified v ersion for preprocessing and
searching for points in E2. We tested 1M q ueries against
1M fix ed points, both sets randomly generated, using
Ne a r p t2, C G A L 3.0.1’s Ne a r e st n e igh bo r se a r ch in g,
[3], and ANN 0 .2, [5]. A proper choice of compiler flags
would probably speed both C G A L and A N N , but not re-
duce their storage cost. N one of these tests req uired any
data I/O since the input was randomly generated and the
output not written. P erforming 1M q ueries against 1M fix ed
points cost as follows.

Pro g ram Time S to rag e

Ne a r p t2 9.4 46MB
CG AL NNS 41 120MB
ANN 41 128MB

We then tried 10M fix ed and 10M q uery points but C G A L
and A N N req uired too much memory. Ne a r p t2 used
458MB and 98 seconds.

4. SUMMARY
T he general lesson of Ne a r p t3 is that simple data struc -
tures lik e the uniform grid can be q uite effi c ient in both time
and space in E3.
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Algebraic Number Comparisons for Robust Geometric Operations 

John Keyser, Koji Ouchi 

Department of Computer Science 

Texas A&M University

In this talk, we describe a method for exact comparison of algebraic numbers, with 

application to geometric modeling. 

M otivation:  Computations with algebraic numbers are of key importance in several 

geometric computations.  Algebraic numbers arise as solutions to systems of 

polynomials� a common operation in many geometric applications, particularly those 

involving curved objects. Polynomials regularly describe the relationships between even 

basic geometric objects, for example the (squared) distance between two points. For more 

complex curved geometric objects, polynomials are often used to describe the actual 

shapes.  Finding solutions to systems of polynomials thus becomes a key operation in 

numerous geometric applications. 

Unfortunately, the robustness issues well-known in traditional computational geometry 

become even more significant when dealing with algebraic numbers and curved 

geometry.  Bounding and handling the numerical error that arises in these computations 

becomes more problematic, as does the detection and elimination of degeneracy 

problems.  For reliable computation on curved geometry, we therefore need robust 

operations on algebraic numbers.  W e choose to use an exact-computation approach, 

achieving robustness by eliminating numerical error, while supporting straightforward 

operations even in the presence of degeneracies. 

Our work is particularly motivated from the field of computer-aided geometric design.  

Finding intersections of geometric objects involves solving systems of polynomials, 

usually of moderate degree in a few variables.  Our methods apply, however, to a far 

wider range of problems. 

Background:  Our earlier work focused on techniques for exact manipulation of 

algebraic curves and 2D points [MAPC00], and applied these to solid modeling, 

producing the first exact boundary evaluation system [ESOLID04].  Although this work 

yielded greater robustness by eliminating numerical error, degeneracies could not be 

handled effectively. 

Computations with algebraic numbers has been a topic of recent research interest among 

a variety of other researchers.  LEDA supports a limited set of constructions for algebraic 

numbers, though it does not solve polynomial systems [LEDA].  The Core library 

supports a wider variety of number types, including real algebraic numbers [CORE].  

Such exact computation approaches have been incorporated in larger projects, such as 

Exacus [EXACUS] and CGAL [CGAL].  Recently, Emiris and Tsigaridas have 

developed an approach for exact comparison of algebraic numbers of relatively small 

degree (at most 4) that is asymptotically faster than an expliit solution [ET04].   
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Major Results:  W e describe a method for comparing complex algebraic numbers 

exactly. More precisely, one can know whether or not the real and imaginary parts of 

given a pair of complex algebraic numbers are identical. In particular, one can test 

whether or not the real and imaginary parts of a given complex algebraic number vanish. 

Our method is based on the rational univariate reduction (RUR).  The RUR computes 

common roots of systems of multivariate polynomials with rational coefficients. The 

roots are represented in terms of a set of univariate polynomials with rational coefficients.  

These polynomials, when evaluated at the roots of another univariate polynomial, yield 

the coordinates of the common roots of the original system.  The RUR can be computed 

exactly, i.e. the coefficients of these polynomials can be computed to full precision. 

As a key advantage over our earlier methods, this RUR method works even in the 

presence of �degenerate� situations.  For example, the RUR approach handles roots of 

high multiplicity, finds roots at singularities, and works even when the underlying set of 

roots is positive dimensional. As such, it offers a general method for achieving robust 

calculations with algebraic numbers. 

Our RUR implementation gives an exact representation of points with algebraic 

coordinates.  This allows us to exactly determine geometric predicates such as whether a 

point lies on a curve or surface.  W e can also determine how surfaces intersect, e.g. 

whether the surfaces meet in �general position.� Thus, our representation is very general, 

and can serve as a single representation for all such algebraic points. Although this point 

representation is more robust than our earlier approach that could not represent 

degeneracies, it is also less efficient.  W e therefore propose the use of the RUR 

computation in a hybrid fashion, using it in cases where there are likely to be difficulties 

due to degeneracies. 

W e describe several applications, with special emphasis on geometric modeling. In 

particular, we describe a new implementation that has been used successfully on certain 

degenerate boundary evaluation problems.  W e describe how the RUR can be used to 

detect when degeneracies occur, and how it can then be combined with a numerical 

perturbation scheme to achieve an overall more robust boundary evaluation.. 
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Analysis of L ayered H ierarchy for N eck laces

Kath ry n B ean∗ S ergey B ereg∗

1 Introduction

M olec u lar confi gu rations can b e m od eled as sets of
sp h eres in 3D. B y im p osing geom etric constraints
on th e sp h eres b ased on m olec u lar b iology one
can ap p ly effi c ient tech niq u es [3], for ex am p le, to
analy ze th e com p lex ity of m olec u lar su rface [1].
G u ib as et al. [2] introd u ced a m od el called n eck-

lace th at fi nd s ap p lications in com p u ter grap h ic s,
com p u ter v ision, rob otics, geograp h ic inform ation
sy stem s and m olec u lar b iology . T h ey stu d ied tw o
d ata stru c tu res, wrapped hierarchy and layered hier-

archy, for rep resenting neck laces and for p erform ing
collision tests.

G u ib as et al. [2] p rov ed th at th e w rap p ed h ierar-
ch y ad m its a sep arating fam ily of size O(n2−2/d).
T h is is th e fi rst su b q u ad ratic b ou nd p rov ed for col-
lision d etection u sing p red efi ned h ierarch ies. Al-
th ou gh th e lay ered h ierarch y can b e u sed for colli-
sion d etection, “no su b q u ad ratic b ou nd on th e size
of a sep arating fam ily b ased on th e lay ered h ierar-
ch y is c u rrently k now n” [2]. T h e m ain resu lt of th is
p ap er is th at th e sam e u p p er b ou nd h old s for th e
lay ered h ierarch y .

O ne of th e ad v antages of lay ered h ierarch y ov er
w rap p ed h ierarch y is th e “local” d efi nition of th e
cages. W e p rop ose a m od ifi cation of th e lay ered
h ierarch y so th at som e d eform ations of a neck lace
can b e m aintained effi c iently . In p artic u lar, w e sh ow
th at rigid-body con form ation al chan ges can b e h an-
d led in O(log n) tim e only .

2 N eck laces and B ounding-V olum e H ierarchies

W e d efi ne th e notion of neck lace in a sligh tly m ore
general form 1.

Definition 1 (Necklace) A neck lace is a se-

qu en ce of beads N=〈B1, B2, . . . , Bn〉 in R
d space

that has the followin g properties:

1. T he radiu s of each bead is in the in terval

∗Dep a rtm e n t o f C o m p u te r S c ie n c e , Un iv e rsity o f T e x a s a t

Da lla s, Bo x 8 3 0 6 8 8 , R ich a rd so n , T X 7 5 0 8 3 , US A.
1W e d o n o t re q u ire th a t a n y tw o c o n se c u tiv e b e a d s a lo n g

th e n e ck la c e h a v e a p o in t in c o m m o n .

[ρm in, ρm a x] where ρm in, ρm a x are positive con -

stan ts.

2. T he distan ce between the cen ters of two adja-

cen t beads is bou n ded by a con stan t δ.

C ollision d etection p rob lem arises in su ch ap p li-
cations as p rotein fold ing and p rotein d ock ing. A
b ou nd ing v olu m e h ierarch y is a com m on ap p roach
th at m od els and d etects collisions and self-collisions
of d iff erent geom etrical sh ap es inc lu d ing neck laces.
T h is ap p roach red u ces com p u tational tim e since it
su ffi ces to test collisions am ong b ou nd ing v olu m es.

Definition 2 (Hierarchies) F or a n ecklace N ,

let T (N ) den ote the balan ced bin ary tree defi n ed re-

cu rsively so that, for an in tern al n ode v, its left

su btree con tain s bm/2c leaves where m is the n u m -

ber of leaves below v. Both wrapped an d layered

hierarchies have a cage C(v) associated with a n ode

v of T (N ) an d the cages of leaves correspon d to

the beads, C(v) = Bi for i-th leaf v where i =
1, 2, . . . , n. F or an in tern al n ode v, the cage is de-

fi n ed diff eren tly for two hierarchies:

• W rap p ed h ierarch y . T he cage C(v) is the

sm allest en closin g ball of beads correspon din g

to the leaves below v.

• Lay ered h ierarch y . T he cage C(v) is the sm all-

est en closin g ball of the cages correspon din g to

the children of v.

T h e lay ered h ierarch y h as m any ad v antages ov er
th e w rap p ed cou nterp art. F or a neck lace size n, th e
lay ered h ierarch y can b e constru c ted in linear tim e
since th e cage of each nod e can b e com p u ted in O(1)
tim e. T h e w rap p ed h ierarch y can b e constru c ted
in O(n log n) tim e b y u sing linear-tim e algorith m
[4] for com p u ting th e m inim u m enc losing sp h ere
M E S . A sim p ler algorith m for com p u ting M E S in
ex p ected O(n) tim e can b e u sed . Note th at th e
algorith m for th e lay ered h ierarch y is ev en sim p ler.

3 N eck lace D eform ation w ith L ayered H ierarchy

M od eling conform ation ch anges is req u ired in p ro-
tein d ock ing, rob otics and com p u ter grap h ic s. O ne
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type of local deform ation - rigid-body conforma-
tional change [5] - can b e defi ned as follow s.

Definition 3 (C onform ational C hange) L et
N = 〈B1,B2, . . . ,Bn〉 be a necklace and let i be an
index from 1 to n − 1. L et M be a rigid motion in
R

3 (the composition of a translation and a rota-
tion). If N ′ = 〈B1, . . . ,Bi,M(Bi+1), . . . ,M(Bn)〉
is a necklace then N ′ is a rigid-body conformational
change of N .

W e sh ow h ow to m odify th e layered h ierarch y
so th at a rigid-b ody conform ational ch ange can b e
done effi c iently. W e store a rigid m otion M(v) as-
soc iated w ith a v ertex v of T (N ). E ach rigid m o-
tion M(v) is a com position of a 3D rotation R(v)
and a translation T (v). T h e rotation can b e rep-
resented as a q u aternion or a rotation m atrix . W e
assu m e th at th e inv erse rigid m otion M−1(v) can
b e com pu ted in O(1) tim e. W e call th e h ierarch y
au gm ented w ith rigid m otions as au gmented layered
hierarchy.

T h e au gm ented layered h ierarch y defi nes th e po-
sition of a b ead Bi in th e space as follow s. Let v1 =
vro o t,v2, . . . ,vk b e th e path from th e root of th e lay-
ered h ierarch y to th e v ertex w ith th e b ead Bi and
let ci b e th e center of th e b ead stored in vk. T h en
th e real position of Bi is M1(M2(. . .Mk(ci) . . .))
w h ere Mj = M(vj),j = 1, . . . , k . Let I denote
th e identity transformation, i.e. I(p) = p for any
p ∈ R

3.

Theorem 1 T he au gmented layered hierarchy can
be maintained in O(log n) time if a rigid-body con-
formational change is applied.

4 Cages of L ayered H ierarchy

Alth ou gh th e layered h ierarch y can su pport rigid-
b ody conform ational ch anges effi c iently (if au g-
m ented as in prev iou s section), th e w rapped h ierar-
ch y oc c u pies sm aller space since its cages are alw ays
no larger th at th e corresponding cages of th e layered
h ierarch y. Despite th is ev idence w e sh ow th at th e
cages of th e layered h ierarch y h av e th e sam e u pper
b ou nd as th e corresponding cages of th e w rapped
h ierarch y.

Let Tu denote th e su b tree rooted at a v ertex u of
T (N ) and let nl(u) b e th e nu m b er of leav es in Tu.

Theorem 2 T he radiu s of any cage C(v) of layered
hierarchy T (N ) is at most δ(nl(v) − 1)/2 + ρm a x,
w here nl(v) is the nu mber of leaves for a tree is
rooted at v.

5 Collision D etection for L ayered H ierarchy

An u sefu l tool for th e collision testing is a separating
family [2].

Definition 4 (Separating F am ily) A separat-
ing fam ily Σ = {(u,v)} is a set of pairs of nodes
of a volu me bou nding hierarchy satisfying the
follow ing properties:

1. If (u,v) ∈ Σ then C(u) and C(v) are disjointed.

2. F or any tw o non-adjacent beads Bp,Bm ∈ N ,
there is a pair (u,v) ∈ Σ su ch that Bp ⊆ C(u)
and Bm ⊆ C(v).

T o deriv e a b ou nd for th e layered h ierarch y w e
analyze a separating fam ily Σ b u ilt b y th e follow -
ing algorith m for collision detection. T h e algorith m
starts w ith th e pair Q = {(r o o t, r o o t)} and, for a
pair (u,v) ∈ Q su ch th at C(u)∩C(v) 6= ∅, replaced
it b y at m ost 4 pairs of ch ildren of u and v. O u r
analysis is b ased on th e analysis of th e w rapped h i-
erarch y b y G u ib as et al. [2].

L em m a 3 If (C(u),C(v)) ∈ Σ then the cage C(v)
is contained in K − C(u) w here K is the ball con-
centric w ith C(u) and of radiu s 4(δnl(u) + ρm a x).

Theorem 4 L et HL be the layered hierarchy for a
necklace N in R

d, d ≥ 3 w ith n beads. Algorithm
2 bu ilds the u niqu e separating family Σ for N of
size O(n2−2/ d). T his bou nd is asymptotically tight
in the w orst case.
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