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Topologically Sweeping the Complete Graph in Optimal Time

Eynat Rafalin *

1 Introduction

We present a novel, simple and easily implementable!
approach to sweep a complete graph of N vertices and
k intersection points and report all intersections in op-
timal O(k) = O(N*) time and O(N?) space. Our
method borrows the concept of horizon trees from the
topological sweep method [6] and uses ideas from [9]
to handle degeneracies. The novelty of the approach is
the use of a moving wall that separates the graph into
two regions at all times: the region in front of the wall
that has known structure, and the region behind the
wall that may contain intersections generated by edges
that the sweep process has not yet predicted. This
method has applications in computing the simplicial
depth median of a point set in R? [1]. Continuing re-
search concentrates on modifying the topological sweep
to work for arbitrary graphs. For some sparse graphs,
where the total size of the cuts is limited, the proposed
algorithm may be particularly effective.

A graph poses challenges for a sweep-line algorithm,
that are not present in line arrangements, and that
most existing sweep techniques do not handle. The
structure holding the sweep-line status needs to be dy-
namic, as vertices and edges are constantly inserted
and deleted. The event points now have two types
and include both intersection points and graph ver-
tices. Finally, short edges not yet encountered by the
sweep line may create intersections that should be pro-
cessed before intersections created by long edges that
have already been detected (see Figure). Processing in
the wrong order may introduce intersections not in the
graph or ignore others, causing errors.

Existing algorithms for segment intersection detec-
tion do not work well for the complete graph. Plane
sweep [3, 4] adds a log N factor to the optimal time
complexity (yielding O(N*log N) time and O(N?)
space). The optimal deterministic algorithm for the in-
tersection reporting problem [5, 2] using O(nlogn + k)
time and O(n) space, is dominated by O(k) = O(N*)
when applied to a complete graph and is highly com-
plex to implement. Topological sweep [6, 7, 9] offers a
log n improvement factor over the vertical line sweep on
an arrangement of n infinite lines, but does not handle
finite line segments.

*Department of Computer Science, Tufts University,
Medford, MA 02155. {erafalin, dls}@cs.tufts.edu

'On C++ code. Experimental results verify the time
and space complexities.

Diane Souvaine*

2 Algorithm Overview

Let G be a planar embedding of a complete graph on N
vertices. Assume vertices are in general position. The
complete graph contains exactly n = w edges and
k, the number of segment intersections, is O(N*). The
number of edges cut by any sweep line is O(N?), but
can be ©(N?) with N/2 vertices on each side of the
line and (%)2 edges crossing it.

We sweep G from left to right to report all intersec-
tion points using a topological line (cut): a monotonic
line in y-direction, intersecting each of the n edges at
most once. The sequence of active segments, one per
edge intersected by the topological line forms the cut.
A segment of an edge is delimited by two adjacent inter-
section points or by the rightmost /leftmost intersection
point and a vertex.

A sweep begins with the leftmost cut, which inter-
sects no edges of the graph, and proceeds to the right in
a series of elementary steps until it becomes the right-
most cut. An elementary step comprises the sweeping
of the topological line past a vertex of the graph whose
incoming edges are all currently intersected by the cut
or past a ready intersection of edges that are consec-
utive in the current cut. There always exists a ready
intersection or a ready vertex, whose incoming edges
already lie on the cut, unless the cut is rightmost [10].

To maintain optimal time complexity linear in the

size of the arrangement and space complexity linear in
the maximal size of the cut, we build upon the con-
cept of horizon trees [6]. Our horizon graphs are often
not trees but horizon forests. The upper (resp. lower)
horizon forest of the cut UHF (resp. LHF) is formed
by extending the cut edges to the right. When two
edges intersect, only the one of lower (resp. higher)
slope continues to the right. Given LHF and UHF, the
intersection of the right delimiters of the two forests
produces the cut, which is computed from the updated
LHF and UHF in constant time per active edge. A set
of segments along the cut that contain the same inter-
section point as their right endpoint, generates a ready
intersection, see [9, 6].
Intersection event points: The active segments
switch position. To update UHF (resp. LHF) after pro-
cessing the intersection point of segments s;, ... S;4k,
for each segments s of the intersection apart from the
first (last) one, traverse the bay formed by the segments
above (below) s, until reaching the segment that inter-
sects the extension of s (see [10, 6]).



Vertex event points: The sweep processes the ver-
tices of the graph only when no intersection points are
ready and in a left-to-right order, precisely when all the
vertices’ incoming edges are active: In a vertex event
point all of the incoming active edges for vertex v are
deleted from the set of active segments and all its out-
going edges are inserted. To update the horizon forests
delete in-edges of v and insert its out-edges. Then up-
date the horizon forest, walking in counterclockwise or-
der around the bay formed by the previous edges to find
the intersection point with an active edge. The edges
emanating from the new vertex to the right, added to
the set of active edges, may cut some of the existing ac-
tive segments, and change the horizon forests and the
cut. To update the horizon forests, test every existing
forest edge for intersection with the new segment, in
time linear in the size of the cut.

A moving wall: The set of active edges does not span
the whole arrangement. Consequently, the sweep can
encounter intersection points created by active edges
before identifying intermediary edges that block them.
For example, Figure (a) contains a graph of 7 vertices.
The dotted sweep line produces the bold active seg-
ments. Intersection B of 06 and 25 is ready to be
processed, as it is the right endpoint of the active seg-
ments associated with these edges. B, however, can-
not be processed yet, as 06 and 25 intersect 34 before
point B. Furthermore, if intersection B is processed,
06 and 25 will switch position in the cut, causing 34
to be inserted incorrectly. Intersection points that are
to the right of any edge that is not yet active cannot be
ready. Alternatively, consider intersection A. Given
the dotted sweep line, both this intersection and vertex
3 are ready to be processed (in vertical sweep vertex
3 would be processed prior to A). However, the order
of the cut edges currently places the edge 16 over edge
05. If vertex 3 is processed at this time, the update of
the horizon forests and the cut will begincorrect. All
intersection points that are to the left of all segments
emanating from vertex v must be processed before v is
processed.

Define a moving wall of a position of the sweep line
as the semi-infinite lines corresponding with the two ex-
treme edges emanating to the right from the next sweep
vertex v;. The moving walls for all vertices can be com-
puted in O(N log N) time using [8]. At any time, the
sweep line has to be forced to the current position of

the moving wall (by processing a ready vertex only if it
is to the left of the line defining the wall). Provably, a
ready intersection always exists unless the sweep line is
aligned with the moving wall or has reached the right-
most cut. To align the sweep line with the cut ensure
that no intersection that is inside the wall is ready and
that ready intersections that affect the wall are swept
before the next vertex is processed.

There may be intersections inside the moving wall
associated with v, that can still be legally swept (e.g.
intersection B in Figure (b)). The sweep line is forced
only to the wall formed by the two extreme segments
emanating to the right from v, and their extension to
infinity instead of including all legal ready intersections,
so intersections that are ready but inside the moving
wall are discarded (Figure (b)). These intersections are
rediscovered when v, is swept, by checking every pair
of adjacent active segments in the cut for ready inter-
sections. This step is performed once for each vertex,
with a cost linear in the size of the active set.
Acknowledgment The authors wish to thank Prof.
Tleana Streinu, Michael A. Burr and Ryan Coleman.
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Dynamic Update of Half-space Depth Contours

M. Burr*

Data depth is an approach to statistical analysis based
on the geometry of the data. Half-space depth' has
been studied most frequently by computational geome-
ters. The half-space depth of a point x relative to a
set of points S = {X1,..., X,,} in R? is the minimum
number of points of S lying in any closed half-space de-
termined by a line through = [2, 11]2. Depth contours,
enclosing regions with increasing depth, help to visu-
alize, quantify and compare data sets. Prior work in-
vestigated combinatorial properties and algorithms for
computation of depth contours for static data sets. We
present a dynamic algorithm for computing the two-
dimensional rank-based half-space depth contours of a
set of n points in O(nlogn) time per operation and
in O(n?) overall space, an improvement over the static
version of O(n?) time per operation. The same al-
gorithm can compute the half-space depth of a single
point relative to a data set dynamically in O(logn)
time and O(n) space. The algorithm does not com-
pute the entire set of contours explicitly but main-
tains the order (ranking) of points according to their
half-space depth. A constant number of contours (e.g.
10%, - - - 100%) can be constructed in O(n) time from
the sorted list of the data points, ranked by depth.
Our algorithm uses generalized dynamic segment trees
to update the depth of every data point and is based
on key characterizations of the potential changes in the
depth contours upon insertions or deletions®. We only
consider data sets in general position.

1 Preliminaries

The statistics community produced contradictory def-
initions for depth contours. The two main approaches
were termed cover and rank [9]. The cover approach
defines the contour of depth k as the boundary of the
set of points in R? with depth > & (for half-space depth
1 <k < [%]). The cover-based half-space depth con-
tour is provably the boundary of the intersection of all
closed half-planes containing exactly n — k + 1 data
points whose bounding line passes through two data
points. The rank approach defines the ath central
region as the convex hull containing the most central
fraction of a sample points [5]. The a-central rank-

*Department of Computer Science, Tufts University, Med-
ford, MA 02155. {mburr,erafalin,dls}@cs.tufts.edu. Partially
supported by NSF grant CCF-0431027

LAlso called location depth or Tukey depth.

2For the reminder of the paper, every half-plane is considered
closed unless otherwise mentioned.

3A detailed analysis can be found in [8] where we also present
an O(nlog?n) time and over all O(n?) space algorithm for dy-
namically computing cover-based half-space depth contours.

E. Rafalin*
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based half-space-depth contour is constructed by sort-
ing all points of the original set according to their half-
space depth, yielding { X[y}, - -+ X}, }, the ranking order
of the points and taking the convex hull of data points
X(js - X[a)- Both approaches assign the same depth
value to points that are members of the data set S and
create depth contours that are nested. The main visual
difference: vertices of the rank contours are only data
points while vertices of the cover contours can be any
point from the data set.

Algorithms have existed for some time for construct-
ing depth contours in 2 and higher dimensions under ei-
ther definition. The best 2-D implementation for com-
puting the ranking order of a set of points or all cover-
based depth contours runs in ©(n?) [6]. Other imple-
mentations (e.g. [10, 3]) compute cover-based contours.

Much prior work exists on dynamic geometric struc-
tures (e.g. [7, 1]). To the best of our knowledge, we
present the first dynamic algorithm for computation of
half-space contours, addressing prior interest [4].

2 The Algorithm

Rank-based contours do not have the appealing proper-
ties of the cover-based contours: e.g. a unique structure
that is relatively easy to update. Our algorithm uti-
lizes the fact that a data point has equal depth values
under the cover and rank approaches, and computes
the rank-based contour by considering the cover-based
contours. Thus, the analysis of our algorithm for the
rank-based contours refers to the complexity of cover-
based contours.

A key idea is, for each data point p, to consider ev-
ery directed line [ passing through p and another data
point and the associated closed half-plane H; to its
right. H; is represented by the unit vector vy, associ-
ated with [, see figure (a). For each point p there is
a set of 2(n — 1) unit vectors, that can be thought of
as points on the unit circle, centered at p. Every point
r € S\{p} is assigned to two antipodal vectors, #¢owards
and Fauway (Where Fiouwaerds 1S the vector pointing to-
wards 7). When a point ¢ is inserted into or deleted
from the data set, exactly the half-planes with associ-
ated vectors in the semi-circle counter-clockwise from
Gtoward 0 away have their depth incremented or decre-
mented. These half-planes are updated simultaneously,
to recompute the depth of p efficiently. To do so we use
the concept of defining lines, half-planes and edges. If
p represents a data point of depth k with respect to set
S of n points, p will appear ezactly once on the (cover)
contour of depth k. If p is on a non-degenerate contour
it has exactly two incident edges, the defining edges of
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p, on the contour of depth k. Every edge on any depth
contour is a sub-segment of a line created by joining
two data points g1, g2 of the set S. The defining lines
l1,1ly for p with respect to S are the lines containing
p’s defining edges. Each defining line I;, ¢ € {1, 2}, bi-
sects the plane into two closed half-planes containing
k+1 and n — k + 1 data points where the half-plane
containing k+ 1 points does not contain the k-th depth
contour. The defining half-planes Hy,, H;, for p with
respect to S are the closed half-planes bounded by the
defining lines of p which contain k£ + 1 data points

When point ¢ is inserted into S the cover-based
depth of a point p € S remains unchanged if ¢ is inside
p’s depth contour and can increase only if ¢ is in the
region outside p’s depth contour. The update of every
data point p, when point g is inserted to or deleted from
S, depends on the location of g relative to the defining
lines for p*. Nine cases completely determine how p’s
depth changes and how its two defining lines are trans-
formed®, see figure (b). These updates are computed
in O(logn) time for each data point p: the number of
data points in every half-plane defined by p and each
point in S\ p is recomputed; the defining lines of p with
respect to the new data set SUq or S\ ¢q are found; the
number of data points in the defining half-plane is the
updated depth of p; knowing all half-planes containing
exactly k' + 1 data points and determined by a line
through p and another data point makes it possible to
determine p’s new defining half-planes as well. (Note
that at least one of the defining half-planes for every
data point remains unchanged after a single insertion
or deletion, see [8]).

Data Structures: For efficiency the algorithm uses
new generalized dynamic segment trees. Each tree rep-
resents the half-planes passing through a data point
p € S and is implemented as an augmented dynamic
red-black tree.

To re-sort data points, we use a linked list of buckets
for depths, from 0 to n/2 (the minimum to maximum
possible), to hold all data points. Bucket k holds a

4The data point to be inserted or deleted lies in one of four
regions or one of the defining lines, yielding nine cases.

5For example, if ¢ is inserted into exactly one defining half-
plane Hy,, then p’s depth is unchanged, but H;, is no longer a
defining half-plane. It can be shown that the vector for p’s new
defining half-plane Hy,, is the first vector found by traversing
the vectors starting from VH,, towards VH,, whose associated

half-plane contains k + 1 data points.

linked list of data points of depth k. Upon insertion or
deletion every point ¢ that changes its depth is moved
from its old bucket to a new bucket. Since the depth
of ¢ changes by at most 1, the update takes O(1) time.

3 Open Questions

e The lower bound for computing the half-space
depth rank of data points (and thus their rank
contours) is {2(nlogn), based on reduction to sort-
ing. We are seeking a method to order data points
according to their depth in o(n?).

e To the best of our knowledge, no dynamic algo-
rithm for computing depth contours according to
other depth measures exists. We are working on a
dynamic scheme to compute regression depth con-
tours (envelopes of the arrangement of lines).

e Most real life experiments are high-dimensional.
Since existing static algorithm for computing
depth contours for most data depth measures are
exponential in dimension, dynamic approximation
algorithms for depth contours of multivariate data
are needed.

Acknowledgement: The authors wish to thank S.
Venkatasubramanian, S. Krishnan and R. Liu.
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Computing a Point of High Simplicial Depth in R?

Jason Burrowes-Jones* William Steiger
Electrical Engineering Computer Science
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November 3, 2004

Abstract
Given a set S = {Py,...,P,} of n points in R?, the simplicial depth o(Q) of a point Q € R?
is the number of open triangles AP;P; P, that contain @, 1 < i < j < k < n. A point is @ is
“deep” if 0(Q) > max; o(P;). We give a simple, easily implementable O(n(logn)?) deterministic
algorithm to compute a deep point and we can also guarantee that Q has depth at least cn?® for
a constant ¢ > 0.

1 Introduction and Summary

In 1974 John Tukey [11] proposed the now familiar notion of halfspace depth, generalizing from one
dimension the idea of measuring depth by ranks. Since then several other mulitvariate depth measures
have been proposed, e.g., hyperplane depth [10], Oja depth [9] (and also see [5]. Here we address
the notion of simplicial depth proposed by Regina Liu in 1990 [8]. Given a set S = {Py,...,P,} of
n data points in general position in R% the simplicial depth of a point Q € R? is defined to be

o(Q) = {1, vigp1), 1 < iy <o <dgpr <n 2 Q€ AP By -~ Py}, (1)

the number of open simplices whose vertices are points in S and which contain (). This measure is
affine invariant and robust over samples from a probability distribution.

Even in R? simplicial depth offers interesting computational and combinatorial challenges. The
simplicial depth of a point () can be computed in ©(nlogn): once the radial ordering of the P; about
@ is known, o(Q) can be obtained in O(n) further steps [5]; the lower bound is due to Aloupis et.al.
[1]. By constructing the arrangement of the lines dual to the P;, we obtain for each P;, the radial
order of the other points around it, and therefore can compute the simplicial depth of all points in
S in time O(n?).

We call a point Q € R? “deep for S” if 0(Q) > max; o(P;), and by the previous observation,
a deep point could be found in time O(n?). A point P* € R? (not necessarily in S) of maximal
simplicial depth is called a simplicial median.

A max-depth data point (i.e., in S), though “deep” by definition, may actually have low depth
(i.e., 0). However Boros and Fiiredi [3] showed that there is always a point @ € R? that is contained
in 2/9 of the triangles determined by the points in S, but that NO point in R? is in 1/4 + ¢ of
them. This means that a simplicial median P* satisfies n®/27 < o(P*) < n3/24 + O(n?), a result
generalized to higher dimension by Bérany [4].

It seems to be hard to find a simplicial median. The O(n*) time algorithm of Aloupis et.al. [2]
is currently best. Therefore the following result may be useful and interesting.

*Research done as a student in the DIMACS Research Experiences for Undergraduates Program at Rutgers
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Theorem 1 Given n points in general position in the plane and € > 0, let P* denote a simplicial
median and o* its depth. Then a deep point QQ having depth at least (1 —e)o* can be computed in
time O(n(logn)?).

It is easy to find a point Q* of the claimed depth, an “approximate median”, and to do so within
the claimed time bounds. The difficulty is to also guarantee that it is “deep”. We do this with a
pruning argument similar to the one used by Langerman and Steiger [7] for the case of hyperplane
depth. A main ingredient is the following

Lemma 1 Given a set S of n points in R?, in time O(nlogn) a point Q' € R? can be found, along
with its depth &', and a “witness halfspace” h that contains at least cn points P; € S, ¢ > 0, with
I(P) <d.

Once we find @Q’, points in S N h are pruned, and the Lemma is applied again to the points in
S\(SNh), giving Q"”. We keep the deeper point. After O(logn) such steps we have Q*, a deep point
for S. If we apply this procedure to SUQ*, Q* an approximate median, the deep point we get would
satisfy the claims of the Theorem.
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The floodlight illumination problem asks whether there
exists a one-to-one placement of n floodlights illuminat-
ing infinite wedges of angles a4, ..., «, at n locations
p1,---,Pn in aplane such that a given infinite wedge W
of angle ¢ located at point ¢ is completely illuminated by
the floodlights. We prove that this problem is NP-hard,
closing an open problem from CCCG 2001 [2]. In fact, we
show that the problem is NP-complete even when «; = «
forall 1 < i < n (the uniform case) and § = > o
(the tight case). We discuss various approximate solu-
tions and show that computing any finite approximation
is NP-hard while e-angle approximations can be obtained
efficiently. Most proofs are omitted in this abstract due to
lack of space. Interested readers are referred to [1].

1 Préiminaries

A generalized wedge is a wedge with a continuous finite
region adjacent to its apex removed. The FLOODLIGHT
ILLUMINATION problem on generalized wedges is as fol-
lows: given n sites py,...,p,, nangles ay, ..., ay,, and
a generalized wedge 1, determine whether there is an as-
signment of angles to sites along with angle orientations
that illuminates W. In the tight illumination problem, the
sum of floodlight spans > «; equals the wedge angle. A
different specialization is the uniform problem, where in
addition to being tight, o; = «; forall ¢, 5.

We now look at the related problem of MONOTONE
MATCHING Suppose we are given n lines in the plane,
n + 1 vertical lines defining n finite width vertical slabs,
and two points, one on the leftmost vertical line and one
on the rightmost. Call this an arrangement of lines and
slabs, and denote it by (L, S, A, p), where L is the set
of lines, S = {s1,..., 8,41} is the set of vertical lines
x = s; forming slabs, and A and p are the two special
points on the lines z = s; and z = s,,41, respectively.
A monotone matching in (L, S, A, p) is a set of n line
segments, each a portion of a unique line and spanning
a unique slab, such that the following holds: (1) the left

vee@l maden. i bm com

end point of the first segment is above ), (2) the left end-
point of each subsequent segment is above the right end-
point of the segment in the previous slab, and (3) p is
above the right endpoint of the last segment. In the more
general problem of PSEUDOLINE MONOTONE MATCH-
ING, one has to check whether a given arrangement of
pseuodolines! and slabs admits a monotone matching.

The floodlight illumiination problem can be related to
the monotone matching problem through duality as de-
scribed by Steiger and Streinu [3].

As atool for our main result, we use NP-completeness
of the problem of finding whether a given directed graph
has a directed disjoint cycle cover.

Theorem 1. DIRECTED DISJOINT CYCLE COVER is NP-
complete, even for graphs with indegree and outdegree

each bounded above by 3, as well as for graphs with out-

degree exactly 3 and indegree at most 4.

2 Floodlight Ilumination isNP-Hard

To give a flavor of the proof of our main result, we prove
the following result in this abstract:

Theorem 2. PSEUDOLINE MONOTONE MATCHING is
NP-complete.

The most important gadget is the forcing gadget, shown
in Figure 1. This is a sequence of slabs associated with
pseudolines that forces the line used previous to the gad-
get to end below a chosen point, and the line used after
the gadget to start above another chosen point.

Proof of Theorem 2. As a potential matching can easily
be verified in polynomial time, this problem is in NP. The
proof of NP-hardness is by a reduction from the bounded
degree version of DIRECTED DISJOINT CYCLE COVER
(see Theorem 1).

1A pseudoline is a curve in R? that intersects any vertical line in
exactly one point. A collection of pseudolines is a set of pseudolines no
two of which intersect more than once.



High sky

Low sky

- Must start above here

High ground

Low ground

Figure 1: The forcing gadget. The arrows show how any
lines used before or after the gadget are constrained.

Suppose we are given a directed graph G = (V, E)
with the outdegree of all vertices exactly 3 and the inde-
gree at most 4. We will have gadgets In(v) and Out(u)
for u,v € V as shown in Figure 2. Let Z(v) C FE bein
the in-edges of v, and let O(u) C E be the out-edges of
u. By our choice of G, |Z(v)| <4 and |O(u)| = 3.

Forced end . Forced end

I(v) {ﬁ—;

T
Forced start |
I

Forced start

Figure 2: Graph gadgets In(v) and Out(u).

Letn = |V]and m = |E|. We will use m primary
pseudolines, each corresponding to an edge in E. There
will be a number of auxiliary pseudolines used in forc-
ing gadgets. The Out(-) gadgets and In(-) gadgets will
be arranged in sequence as shown in Figure 3. The pri-
mary pseudoline corresponding to edge (u,v) will first
pass through Out(u), and then pass through In(v).

We claim that when arranged as in Figure 3 along with
appropriate forcing gadgets for each In(-) and Out(:)
gadget, exactly one e € Z(v;) is used in In(v;) and ex-
actly one e € O(v;) is not used in Out(v;), 1 <i < n.

A directed disjoint cycle cover of G is equivalent to a
permutation 7 on the vertices, where (v) is the predeces-
sor of v in the cycle containing v. If such a permutation
exists, then a monotone matching exists, by not selecting
the edge at Out(u) corresponding to = —*(u), and select-
ing the edge corresponding to 7(v) at In(v). Conversely,
if a monotone matching exists, then the permutation 7 can
be recovered by setting 7(v) equal to the edge that is used
in In(v). This completes the reduction. O

The proof of NP-hardness of MONOTONE MATCH-

SKY

In(v,)

E Out(v;)

Out(vy)

Out(v,)

I

GROUND

Figure 3: Overall view of the reduction from DIRECTED
DISJOINT CYCLE COVER.

ING with straight lines is based on the same idea but is
somewhat more involved. The details can be found in [1].
From the duality between monotone matching and flood-
light illumination, we have

Theorem 3. FLOODLIGHT ILLUMINATION is NP-hard.
The tight, restricted, and uniform versions of the problem
are NP-complete.

3 Approximate [ llumination

We now look at approximation algorithms to solve the
floodlight illumination problem in the tight case. Let F be
an illumination of a wedge W. F is a finite-approximation
if it illuminates W\ S, where S is a finite region. F is an
e angle-approximation if it illuminates W \ S., where S,
is a union of wedges whose total angle is at most . We
have the following result:

Theorem 4. For the tight floodlight illumination problem,
computing a finite-approximation is NP-hard, where as
for any ¢ an ¢ angle-approximation can be found in poly-
nomial time.

References

[1] M. Cary, A. Rudra, A. Sabharwal, and E. \ee. Floodlight il-
lumination of inifinite wedges. Technical Report UW-CSE-
2004-10-04, University of Washington, Seattle, Oct. 2004.

[2] E. Demaine and J. O’Rourke. Open problems from CCCG
2001. In Proceedings of the 13th Canadian Conference on
Computational Geometry, Waterloo, Canada, Aug. 2001.

[3] W. L. Steiger and I. Streinu. Illumination by floodlights.
Computational Geometry, 10:57-70, 1998.



Proximity Problems on Line Segments Spanned by Points”

Ovidiu Daescu and Jun Luo
Department of Computer Science, University of Texas at Dallas

Richardson, TX 75080, USA

1 Abstract

We address proximity problems for lines and line segments spanned by points in the plane.

Closest (farthest) line segment from point. Given a set S = {p1,ps,...,pn} of n points in the
plane, and another point ¢, find an extremal (closest, farthest) line segment from ¢ among the set E of
O(n?) line segments defined by the points in S.

The solutions to this problem are related to efficient solutions for the following problems.

Closest (farthest) line from point. Given a set S = {p1,p2,...,pn} of n points in the plane, and
another point ¢, find an extremal (closest, farthest) line from ¢ among the set L of O(n?) lines defined
by the points in S.

There are a number of motivations for studying these proximity problems. For example, consider a
vertex ¢ that is to be inserted in a geometric graph GG and assume one would like to place a label at g.
For clarity in visualization, it is desirable the label does not intersect any edge that is not adjacent to q.
If new edges can be created dynamically, a suitable test for deciding whether to place ¢ at a particular
location might include finding the closest edge to ¢ among the edges of the complete graph G, defined
by the vertices of G.

The problems we study are related to the well known slope selection and distance selection problems,
and to a number of optimization problems such as computing the largest empty disk or the smallest
enclosing circle of S. The slope selection problem is to find the line in L with the k-th smallest slope
and has been solved deterministically in O(nlogn) time [2,6]. A simple, randomized O(nlogn) time
algorithm has been presented in [3]. The distance selection problem is to find the k-th smallest distance
between the points in S and can be solved in O(nlogn + n?/31/310g5/3 n) expected time [1] or in
O(n*/31og® n) deterministic time [6]. However, computing the smallest distance (the closest pair of S)
or the largest distance (the diameter of S) are textbook problems in computational geometry and can
be solved optimally in O(nlogn) time and O(n) space [8].

Computing the farthest or closest line of L from a point ¢ is closely related to counting the number
of lines in L that are intersected by a disk D centered at ¢q. Since a line [ € L that intersects D can be

sandwiched between two lines (not necessarily in L) parallel to [ and tangent to D, using a standard

*This research was partially supported by NSF grant CCF-0430366.



point-line duality transform, the duals of the lines intersecting D correspond to points inside the stabbing
region D* of D [9]. The boundary dD* of D* is the set of points dual to the tangents of D, and D*
is bounded from above by a convex z-monotone curve and from below by a concave z-monotone curve
(see [9], page 255; in case of disks these curves are the two branches of a hyperbola [5]). Thus, to count
the number of lines in L that are intersected by D it is enough to count the number of intersection
points of the dual lines of S that are within D*. This can be done in O(nlogn) time using Mount and
Netanyahu’s [7] algorithm for counting the number of line intersections inside a bounded region (two
vertical lines corresponding to the smallest and largest slopes of the lines in L can be added). Since
the only step of the algorithm in [7] that depends on the radius of D is the sorting step, one can use
parametric search to compute the smallest radius disk centered at ¢ and intersecting & lines of L, for
any integer 1 < k < (’5) The parametric search part is essentially the same as that for selecting vertices
in arrangements (see [4], page 687), and takes O(n log? n) time. Then, the k closest lines from ¢ can be
reported in O(nlog?n + k) time and O(n) space.

Results. As with the distance selection problem, it would be interesting to see if computing an extremal
line (or line segment) from ¢q can be done faster than computing the k-th closest line (or line segment).
We present O(nlogn) time, O(n) space algorithms for these problems. Our main result is summarized

in the theorem below.

Theorem 1 Given a set S of n points in the plane and another point q, the closest (farthest) line
segment from q among those defined by S can be found in O(nlogn) time and O(n) space.

Our solutions are based on simple geometric primitives and are easy to implement. A simple
application of our techniques for computing the closest and farthest lines from ¢ leads to an O(nlogn)
time, O(n) space solution for the following problem.

Minimum (maximum) area anchored triangle. Given a set S of n points in the plane and an

anchor point ¢, compute the minimum (maximum) area triangle defined by q with S\ {¢}.
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Self-reconfiguring Robots

Daniela Rus
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We wish to create versatile robots by using self-reconfiguration: hundreds
of small modules autonomously organize and reorganize as geometric struc-
tures to best fit the terrain on which the robot has to move, the shape of the
object the robot has to manipulate, or the sensing needs for the given task.
Self-reconfiguration allows large collections of small robots to actively orga-
nize as the most optimal geometric structure to perform useful coordinated
work.

A self-reconfiguring robot consists of a set of identical modules that can
dynamically and autonomously reconfigure in a variety of shapes, to best
fit the terrain, environment, and task. Self-reconfiguration leads to versatile
robots that can support multiple modalities of locomotion and manipulation.
Self-reconfiguring robots constitute large scale distributed systems. Because
the modules change their location continuously they also constitute ad-hoc
networks.

This talk will discuss the geometric challenges of creating self-reconfiguring
robots, ranging from designing hardware capable of self-reconfiguration to
developing distributed controllers and planners for such systems that are
scalable, adaptive, and support real-time behavior.
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Unfolding Smooth Primsatoids
ABSTRACT

Nadia Benbernou*

Abstract

We define a notion for unfolding smooth, ruled sur-
faces, and prove that every smooth prismatoid (the con-
vex hull of two smooth curves lying in parallel planes),
has a nonoverlapping “volcano unfolding.” These un-
foldings keep the base intact, unfold the sides outward,
splayed around the base, and attach the top to the tip of
some side rib. Our result answers a question for smooth
prismatoids whose analog for polyhedral prismatoids re-
mains unsolved.

Introduction. It is a long-unsolved problem to deter-
mine whether or not every convex polyhedron can be cut
along its edges and unfolded flat into the plane to a sin-
gle nonoverlapping simple polygon (see, e.g., [O’R00]),
the net. These unfoldings are known as edge unfoldings
because the surface cuts are along edges. In this pa-
per,! we generalize edge unfoldings to certain piecewise-
smooth ruled surfaces,and show that smooth prisma-
toids can always be unfolded without overlap. Our hope

is that the smooth case will inform the polyhedral case.

Pyramids and Cones. A pryamid is a polyhedron that
is the convex hull of a convex base polygon B and an
apex v above the plane containing the base. The side
faces are all triangles. It is trivial to unfold a pyramid
without overlap: cut all side edges and no base edge.
This produces what might be called a volcano unfolding.
Examples are shown in Fig. 1(a,b) for regular polygon
bases.

We generalize pyramids to cones: shapes that are the
convex hull of a smooth convex curve base B lying in the
zy-plane, and a point apex v above the plane. We define
the volcano unfolding of a cone to be the natural lim-
iting shape as the number of vertices of base polygonal
approximations goes to infinity, and each side triangle
approaches a segment rib. This limiting process is illus-
trated in Fig. 1(c). For any point b € 9B, the segment
vb is unfolded across the tangent to B at b. Note that

*Department of Mathematics nbenbern@email.smith.edu.

TDepartment of Mathematics pcahn@email.smith.edu.

tDepartment of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu. Supported by NSF
Distinguished Teaching Scholars award DUE-0123154.

1See http://arxiv.org/abs/cs/0407063 for the full version.
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Figure 1:

Unfoldings of regular pyramids (a-b) ap-
proaching the unfolding of a cone (c).

this net for a cone is no longer an unfolding that could
be produced by paper, because the area increases.

Main Result. Our main result concerns a shape known
as a prismatoid, the convex hull of two convex polygons
A and B lying in parallel planes. There is no algorithm
for edge-unfolding prismatoids. Our concentration in
this paper is on smooth prismatoids, which we define as
the convex hull of two smooth convex curves A above
and B below, lying in parallel planes. A volcano un-
folding of a smooth prismatoid unfolds every rib seg-
ment ab of the convex hull, a € A and b € IB, across
the tangent to B at b, into the zy-plane, surrounding
the base B, with the top A attached to one appropri-
ately chosen rib. The main result of this paper is that
every smooth prismatoid has a nonoverlapping volcano
unfolding. Fig. 2 illustrates the side unfolding of a pris-
matoid; the top A must be carefully placed tangent to
the side unfolding and on the convex hull of that un-
folding.
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Folding Paper Shopping Bags
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1 Introduction. In grocery stores around the
world, people fold and unfold countless paper bags
every day. The rectangular-bottomed paper bags
that we know today are manufactured in their 3D
shape, then folded flat for shipping and storage, and
later unfolded for use. This process was revolu-
tionized by Margaret Knight (1838-1914), who de-
signed a machine in 1867 for automatically gluing
and folding rectangular-bottomed paper bags [8].
Before then, paper bags were cut, glued, and folded
by hand. Knight’s machine effectively demolished
the working-class profession of “paper folder”.

Our work questions whether paper bags can be
truly (mathematically) folded and unfolded in the
way that happens many times daily in reality. More
precisely, we consider foldings that use a finite num-
ber of creases, between which the paper must stay
rigid and flat, as if the paper were made of plastic or
metal plates connected by hinges. Such foldings are
sometimes called rigid origami, being more restrictive
than general origami foldings, which allow continu-
ous bending and curving of the paper and thus effec-
tively uncountably infinite “creasing”. It is known
that essentially everything can be folded by a con-
tinuous origami folding [6], but that this is not the
case for rigid origami.

We prove that the rectangular-bottomed paper
bag cannot be folded flat or unfolded from its flat
state using the usual set of creases that are so com-
mon in reality—in fact, the bag cannot move at all
from either its folded or unfolded state. However,
we show that a different creasing of a paper bag en-
ables it to fold flat from its 3D state. We also con-
jecture a way to unfold a paper bag from its flat
state if it was already folded using the usual set of
creases (by an adversary equipped with techniques
from origami or reality).

2 Related Work. In the mathematical literature,
the closest work to rigid folding is rigidity. The fa-
mous Bellows Theorem of Connelly, Sabitov, and
Walz [4] says that any polyhedral piece of paper
forming a closed surface preserves its volume when
folded according to a finite number of creases. In

*Dartmouth Computer Science Department, Pittsburgh, PA
15213, devin@cs.dartmouth.edu

fMIT Computer Science and Artificial Intelligence Labora-
tory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,
mdemaine }@mit.edu
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Figure 1: A shopping bag with creases in the usual places.

contrast, as suggested by the existence of bellows
in the real world, it is possible to change the vol-
ume using origami folding. Even more fundamen-
tal are Cauchy’s rigidity theorem, Aleksandrov’s ex-
tension, and Connelly’s extension [2], which all es-
tablish an inability to fold a convex polyhedron us-
ing a finite number of creases. (In Cauchy’s case,
the creases must be precisely the edges of the poly-
hedron; in Connelly’s case, any finite set of addi-
tional creases can be placed; Aleksandrov’s theorem
is somewhere in between.) Another result of Con-
nelly! is that a positive-curvature “corner” (the cycle
of facets surrounding a vertex in a convex polyhe-
dron) cannot be turned “inside-out” no matter how
we place finitely many additional creases; this result
answers a problem of Gardner [7]. In contrast, a pa-
per bag can be turned inside-out with an origami
folding (and in real life) [3].

Few papers discuss rigid origami directly. De-
maine and Demaine [5] present a family of origami
“bases” that can be folded rigidly. Streinu and
Whiteley [9] proved that any single-vertex crease
pattern can be folded rigidly—up to but not in-
cluded the moment at which multiple layers of pa-
per coincide. Balkcom and Mason [1] demonstrate
how some classes of origami can be rigidly folded
by a robot.

3 Main Results. Figure 1 shows a shopping bag
with the usual crease pattern, and dimensions w, I,
and h. For the bag shown, h > w/2,and [ > w.

Our first main result states that a shopping bag
cannot be folded at all with just the usual creases:

Theorem 1 A shopping bag with the usual crease pat-
tern has a configuration space consisting of two isolated
points, corresponding to the fully-open and fully-closed
configurations.

IPersonal communication, 1998.
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The results described in the previous section have
two immediate consequences if we allow finitely
many additional creases. First, the Bellows Theorem
implies that, if the shopping bag had a top, no finite
number of additional creases would allow the vol-
ume of the bag to be changed. Second, because the
corners of the bag are convex, no finite number of
additional creases would allow the shopping bag to
be turned inside-out.

Based on these consequences,
it might seem that no finite set
of additional creases would al-
low a shopping bag to be folded
flat. Our second result shows the
opposite. A short shopping bag,
with h < w/2, cannot have the
usual shopping bag crease pat-
tern, because the 45° creases do
not intersect on the interior of the
left and right sides of the bag; see
Figure 2. In this case, we show

Figure 2: A short
paper bag, similar
to a collapsible
department-store
gift box.

Theorem 2 Every short shopping bag (with h < w/2)
can be collapsed flat using the creases in Figure 2.

Now Theorem 2 suggests a method for folding a
tall shopping bag: add creases to allow the tall bag
to be telescoped until it is short enough to collapse
flat. Figure 3 shows an animation of our procedure
for shortening a bag by reducing & up to min{w, I}
Using a sequence of these operations, we show

Theorem 3 A tall shopping bag can be collapsed flat
with the addition of finitely many creases.

The collapsed state of the shop-
ping bag after applying the fold-
ing technique described in the
proof of theorem 3 is not the
same as the collapsed state of
the shopping bag with no ad-
ditional creases. This difference
suggests a more difficult ques-
tion: can a collapsed shopping
bag be opened up with the ad-
dition of a finite set of creases?
We conjecture that it can, and pro-
pose a possible crease pattern in
Figure 4.

Figure 4: Conjec-
tured creases for
unfolding an al-
ready folded pa-
per bag.

Conjecture 1 A collapsed tall shopping bag can be un-
folded with the addtion of a finite number of creases.

If true, this conjecture would also offer a simpler
way to flatten a tall shopping bag.

& & & &

Figure 3: Procedure for shortening a rectangular tube.
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Hinged Dissection of Polypolyhedra
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1 Introduction. A dissection of two figures (solid
2D or 3D shapes, e.g., polygons or polyhedra) is a way
to cut the first figure into finitely many (compact) pieces
and to rigidly move those pieces to form the second fig-
ure. It is well-known that any two polygons of the same
area have a dissection, but not every two polyhedra of the
same volume have a dissection [3, 5].

A hinged dissection of
two figures is a dissection in

which the pieces are hinged

together at points (in 2D
Figure 1. Hinged dissec-
tion of square and equilat-

or 3D) or along edges (in
3D), and there is a mo-

eral triangle, described by Du-
deney [5].

tion between the two figures
that adheres to the hinging,
keeping the hinge connec-
tions between pieces intact.
While a few hinged dissec-
tions such as the one in Fig-
ure [ are quite old (1902), hinged dissections have re-
ceived most of their study in the last few years; see [i6} 4].
It remains open whether every two polygons of the same
area have a hinged dissection, or whether every two poly-
hedra that have a dissection also have a hinged dissection.

2 Results. In this pa- A
per we develop a broad fam- ‘
ily of 3D hinged dissec- Q
tions for a class of poly- s
hedra called polypolyhedra.
For a polyhedron P with
labeled faces, a polypoly-
hedron of type P is an
interior-connected non-self-
intersecting solid formed by
joining several rigid copies
of P wholly along identically labeled faces. (Such join-
ings are possible only for reflectionally symmetric faces.)
Figure Plshows two polycubes (where P is a cube).

For every polyhedron P and positive integer n, we de-
velop one hinged dissection that folds into all (exponen-
tially many) n-polyhedra of type P. The number of pieces

Figure 2. Two polycubes of
order 8, which have a 24-
piece edge-hinged dissection
by our results.
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in the hinged dissection is linear in n and the combinato-
rial complexity of P. For polyplatonics, we give partic-
ularly efficient hinged dissections, tuning the number of
pieces to the minimum possible among a natural class of
“regular” hinged dissections of polypolyhedra. For poly-
parallelepipeds (where P is any fixed parallelepiped), we
give hinged dissections in which every piece is a scaled
copy of P. All of our hinged dissections are hinged along
edges and form a cyclic chain of pieces, which can be bro-
ken into a linear chain of pieces.

Our results generalize analogous results about hinged
dissections of “polyforms” in 2D [4].

Like most previous theoretical work in hinged dissec-
tions, we do not know whether our hinged dissections can
be folded from one configuration to another without self-
intersection. However, we prove the existence of such mo-
tions for the most complicated gadget, the twister.

3 Proof Overview. Our construction of a hinged dis-
section of all n-polyhedra of type P divides into two parts.
First, we find a suitable hinged dissection of the base poly-
hedron P. The exact constraints on this dissection vary,
but two necessary properties are that the hinged dissec-
tion must be (1) cyclic, forming a closed chain of pieces,
and (2) exposed in the sense that, for every face of P, there
is a hinge in H that lies on the face (either interior to the
face or on its boundary). For platonic solids, these hinges
will be edges of the polyhedron; in the general case, we
place these hinges along faces’ lines of reflectional sym-
metry. Second, we repeat n copies of this hinged dissec-
tion of P, spliced together into one long closed chain. Fi-
nally, we prove that this new hinged dissection can fold
into all n-polyhedra of type P, by induction on n.

3.1 Platonic Solids. Figure B shows an exposed
cyclic hinged dissection of each of the platonic solids.
Basically, each piece comes from carving the k-sided pla-
tonic solid into & face-based pyramids with the platonic
solid’s centroid as the apex. As drawn, these hinged dis-
sections consist of k& pieces, but by merging consecutive
pairs of pieces along their common face, the number of
pieces can be reduced to k/2 pieces while maintaining ex-
posed hinges. These exposed hinged dissections have the
fewest possible pieces, subject to the exposure constraint,
because a hinge can simultaneously satisfy at most two
faces of the original polyhedron.

3.2 General Case. In the general case, we use a 3D
generalization of the straight skeleton [I] to decompose
a given polyhedron into a collection of cells, exactly one
cell per facet, such that exactly one cell is incident to each
facet. These cells form the pieces in an exposed hinged
dissection. For these pieces can be connected together
into a cyclic hinged dissection, we need to first arrange
for the polyhedron P to have a Hamiltonian dual graph.

In fact, we make two main modifications to P’s sur-
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dodecahedron

Figure 3: Unfolded exposed cyclic hinged dissections of the
platonic solids. The bold lines indicate a pair of edges that are
joined by a hinge but have been separated in this figure to permit
unfolding. The dashed lines denote all other hinges between
pieces. In the unfolding, the bases of all of the pyramid pieces
lie on a plane, and the apexes lie above that plane (closer to the
viewer).

face. First, we divide each reflectionally symmetric face
of P along one of its lines of symmetry, producing a poly-
hedron P’. Second, we divide each face of P’ so that
any spanning tree of the
faces in P’ translates into
a Hamiltonian cycle in the
resulting polyhedron P”.
This reduction is similar to
the Hamiltonian triangula-
tion result of [2] as well as
a refinement for hinged dis-
section of 2D polyforms [4}
Section 6]. We conceptu-
ally triangulate each face f
of P’ using chords (though
we do not cut along the edges of that triangulation). Then,
for each triangle, we cut from an arbitrarily chosen inte-
rior point to the midpoints of the three edges. Figure @
shows an example. For any spanning tree of the faces
of P’, we can walk around the tree (follow an Eulerian
tour) and produce a Hamiltonian cycle on the faces of P”.

In particular, we can start from the matching on the
faces of P’ from the reflectionally symmetric pairing, and
choose a spanning tree on the faces of P’ that contains
this matching. Then the resulting Hamiltonian cycle in
P” crosses a subdivided edge of every line of symme-
try. (In fact, the Hamiltonian cycle crosses every subdi-
vided edge of every line of symmetry.) Thus, in the ex-
posed cyclic hinged dissection of the Hamiltonian poly-
hedron P”, there is an exposed hinge along every line of
symmetry. Therefore all joinings between copies of P”
can use these hinges.

3.3 Putting Pieces Together. We use induction to
prove that the nth repetition of the exposed cyclic hinged
dissection of P described above can fold into any n-
polyhedron of type P. The base case of n = 1 is trivial.

Figure 4: Hamiltonian refine-
ment of five faces in a hypo-
thetical polyhedron.

Given an n-polyhedron Q of type P, one copy P, of P
can be removed to produce an (n — 1)-polyhedron @’. By
induction, the (n — 1)st repetition of the exposed hinged
dissection can fold into @)’. Also, P; itself can be decom-
posed into an instance of the exposed hinged dissection.
Our goal is to merge these two hinged dissections. Essen-
tially, we show that the hinged dissections can be placed
against the shared face between P, and @’ in such a way
that (1) a hinge of the exposed hinged dissection of P,
coincides with a hinge of the hinged dissection of @)/, and
(2) the four pieces involved in these two hinges can be re-
hinged so that all pieces are connected in a single cycle,
and that cycle is exactly the nth repetition of the exposed
hinged dissection of P.

3.4 Mutually Rotated Base Polyhedra: Twisters.
If a face is k-fold symmetric for k£ > 3, then there are
several ways to glue two copies of P along this face.
These different gluings produce different polypolyhedra
if P itself is not k-fold symmetric. However, only one
of the gluings can be produced by the inductive argument
described above, because only one relative rotation will
align the hinges that lie along the one chosen line of sym-
metry.

To enable these kinds
of joinings, we embed the
twister gadget shown in
Figure Bl beneath each face
of P” that has k-fold sym-
metry for k. > 3. This
gadget consists of 8% cycli-

Figure 5:
twister gadget allows turns of

This 32-piece

cally hinged pieces that al-
low any integer multiple of
1/k rotation of one set of
pieces with respect to the
other pieces.
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A 2-chain Can Interlock with a k-chain
ABSTRACT

Julie Glass* Stefan Langerman’

Abstract

One of the open problems posed in [3] is: what is the
minimal number & such that an open, flexible k-chain
can interlock with a flexible 2-chain? In this paper,
we establish the assumption behind this problem, that
there is indeed some k that achieves interlocking. We
prove that a flexible 2-chain can interlock with a flexible,
open 16-chain.

1 Introduction

A polygonal chain (or just chain) is a linkage of rigid
bars (line segments, edges) connected at their endpoints
(joints, vertices), which forms a simple path (an open
chain) or a simple cycle (a closed chain). A folding of
a chain is any reconfiguration obtained by moving the
vertices so that the lengths of edges are preserved and
the edges do not intersect or pass through one another.
The vertices act as universal joints, so these are flexible
chains. If a collection of chains cannot be separated by
foldings, the chains are said to be interlocked.

Interlocking of polygonal chains was studied in [4, 3],
establishing a number of results regarding which col-
lection of chains can and cannot interlock. One of the
open problems posed in [3] asked for the minimal k such
that a flexible open k-chain can interlock with a flexible
2-chain. An unmentioned assumption behind this open
problem is that there is some k that achieves interlock-
ing. It is this question we address here, showing that
k = 16 suffices.

It was conjectured in [3] that the minimal k satisfies
6 < k < 11. This conjecture was based on a construc-
tion of an 11-chain that likely does interlock with a 2-
chain. We employ some ideas from this construction in
the example described here, but for a 16-chain. Our
main contribution is a proof that k£ = 16 suffices. It
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appears that using more bars makes it easier to obtain
a formal proof of interlockedness.!
Results from [3] include:

1. Two open 3-chains cannot interlock.
2. No collection of 2-chains can interlock.

3. A flexible open 3-chain can interlock with a flexible
open 4-chain.

This third result is crucial to the construction we
present, which establishes our main theorem, that a 2-
chain can interlock a 16-chain (Theorem 1 below.)

2 ldea of Proof

We first sketch the main idea of the proof. If we could
build a rigid trapezoid with small rings at its four ver-
tices (Th, T, T3, Ty), this could interlock with a 2-chain,
as illustrated in Figure 1(a). For then pulling vertex v
of the 2-chain away from the trapezoid would necessar-
ily diminish the half apex angle «, and pushing v down
toward the trapezoid would increase . But the only
slack provided for « is that determined by the diameter
of the rings. We make as our subgoal, then, building
such a trapezoid.

v

T,

L . a,
/ \ i

u

(@) © b

Figure 1: (a) A rigid trapezoid with rings would inter-
lock with a 2-chain; (b) An open chain that simulates a
rigid trapezoid; (b) Fixing a crossing of aa’ with bb'.

We can construct a trapezoid with four links, and
rigidify it with two crossing diagonal links. In fact, only

1See http://arxiv.org/abs/cs.CG/0410052 for the full paper.



one diagonal is necessary to rigidify a trapezoid in the
plane, but clearly a single diagonal leaves the freedom
to fold along that diagonal in 3D. This freedom will be
removed by the interlocked 2-chain, however, so a single
diagonal suffices. To create this rigidified trapezoid with
a single open chain, we need to employ 5 links, as shown
in Figure 1(b). But this will only be rigid if the links
that meet at the two vertices incident to the diagonal
are truly “pinned” there. In general we want to take one
subchain aa’ and pin its crossing with another subchain
bb’ to some small region of space. See Figure 1(c) for
the idea.

This pinning can be achieved by the “3/4-tangle” in-
terlocking from [3], result (3) above; see Figure 2.

C
Y

\
E \§ A

=,
W\\*\
N D

B/
X
z
Figure 2: Fig. 6 from [3].

So the idea is replace the two critical crossings with
a small copy of this configuration. This can be accom-
plished with 7 links per 3/4-tangle, but sharing with the
incident incoming and outgoing trapezoid links poten-
tially reduces the number of links needed per tangle. We
have achieved 5 links at one tangle and 4 at the other.
The other two vertices of the trapezoid need to simulate
the rings in Figure 1(a), and this can be accomplished
with one extra link per vertex. Together with the 5
links for the main trapezoid skeleton, we employ a total
of 54+ (5+4+141)=16 links.

The final construction, shown in Figure 3, establishes
our main result:

Theorem 1 The 2-link chain is interlocked with the 16-
link trapezoid chain.

3 Discussion

We do not believe that & = 16 is minimal. We have
designed two different 11-chains both of which appear
to interlock with a 2-chain. However, both are based
on a triangular skeleton rather than on a trapezoidal
skeleton, and place the apex v of the 2-chain close to
the 11-chain. It seems it will require a different proof
technique to establish interlocking, for the simplicity of
the proof presented here relies on the vertices of the
2-chain remaining far from the entangling chain.
Another direction to explore is closed chains, for
which it is reasonable to expect fewer links. Replac-

Figure 3: An open 16-chain forming a nearly rigid trape-
zoid, interlocked with a 2-chain (red).

ing the 3/4-tangles with “knitting needles” configura-
tions [2][1] produces a closed chain that appears inter-
locked, but we have not determined the minimum num-
ber of links that can achieve this.
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Grid Edge-Unfolding Orthostacks with Orthogonally Convex Slabs

Mirela Damian*

Abstract

We explore an instance of the question of unfolding
an orthogonal polyhedron into one single connected
piece that does not overlap itself and in which faces
can only remain glued along whole edges.

1 Introduction

An orthogonal polygon P is a simple polygon with
edges parallel to the coordinate axes. We use hor-
izontal to refer to the x dimension and wvertical to
refer to the y dimension in the plane. P is called
orthogonally convex if the intersection of P with any
horizontal or vertical line is either empty or a single
line segment.

A slab is a prism with an orthogonal polygon as
basis and rectangular vertical faces. An orthostack
S is an orthogonal polyhedron formed by stacking
slabs Sp, S1,... in the z dimension. Fig. 1 shows

an orthostack example with two orthogonally con-
If R0y R1yR2y s

vex slabs Sp and S;. are distinct

Figure 1: (a) An orthostack with two slabs Sp and
Si. (b) Grid lines along which cuts are allowed.

z-coordinates of vertices of S, slab S; is sandwiched
between horizontal planes z z; and z = Zj41.
The bottom B; of S; is the intersection of S; with
plane z = z;, and the top T; is the intersection of S;
with plane z = z;41. Note that T; and B; may be

]

By

Figure 2: Top Ty and bottom B; of the two slabs
from Fig. 1; shaded pieces are exposed.

partly exposed (see the shaded pieces from Fig. 2)
and partly interior to S.
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In 3D we use horizontal to refer to a direction
parallel to the zy plane and wvertical to refer to a
direction parallel to the zz or yz plane. The co-
ordinate planes passing through every vertex of S
induce a grid subdivision of S. We use the term face
to refer to a surface rectangle in this subdivision. A
grid edge-unfolding of S uses cuts along grid lines to
unfold S into one connected planar piece in which
faces remain connected along whole edges.

Demaine et. al[DIL04] show that all orthostacks
can be grid vertex-unfolded, allowing faces to remain
connected at single vertices. This abstract focuses
on grid edge-unfolding of orthostacks with orthogo-
nally convex slabs that satisfy an additional restric-
tion: each maximal exposed piece of T; contains two
orthogonally incident edges of B;y1.

A few more definitions are needed to present the
algorithm. For any vertical face f of S, let a(f)
be the space enclosed between the two planes or-
thogonal to f passing through the vertical edges
of f. Define strip s;(f) as the maximum exposed
connected component adjacent to f that lies in
a(f)N(T;UB;y1). For instance, the strip labeled C
in Fig. 3b is precisely s1(Lo). The band (or zone) Z;
consists of all vertical faces of S;. For any element
z of S, we use the primed symbol z' to refer to z in
the 2D unfolding.

2 Unfolding Algorithm

We proceed with an informal description of the un-
folding with the help of the example from Fig. 1.
Each band Z; is cut along a vertical edge and un-
folded in the plane horizontally, as in Fig. 3. Two
vertical faces of each band Z; are particularly im-
portant: L;-, the leftmost face and R;-, the rightmost
face in the unfolding of Z;. Bands for adjacent slabs
are connected vertically by a bridge, a connected set
of horizontal faces of S. A bridge connects R; to
L, 41 such that L 41 always lies vertically aligned
or to the right of R;- in the unfolding, as in Fig. 3.
Exposed pieces of T; and B; are attached as vertical
strips to opposite sides of ZZ'-.

2.1 Determining R;, L;; and Bridge R; — L;

Suppose that Z; 1, L; and the bridge connecting
R;_1 to L; have been flattened out in the plane.



Ly [ Ry

Bottom B, j

(a)

Figure 3: (a) An unfolding of S from Fig. 1 with
bridge D. (b) Partition of Tj into strips.

W.l.o.g., assume that the face of Z; adjacent to the
right edge of L; lies ccw from L;, when viewed from
z = oo. For any face f of Z;, let H(f) denote the
open halfspace that contains f and is bounded by
the vertical plane orthogonal to f passing through
the vertical edge of f first encountered in a ccw walk
from L;.

Face R; is not always clockwise adjacent to L;.
We pick R; to be the face of Z; last encountered
in a ccw walk starting at L;, with R; # L;, such
that either R; is adjacent to Z;;1, or both of the
following hold:

(1) The halfspace H(R;) contains a face f of Z; 41
parallel to R;

(2) There exists an exposed connected component
C in H(R;)NT; or H(R;)NB;+1 that is adjacent
to both R; and f.

We claim that R; always exists. Furthermore, sev-
eral faces f may satisfy conditions (1) and (2)
above. We pick L;;; to be the face f whose dis-
tance to the plane bounding H(R;) is smallest. In
case of a tie, L; 1 is the face closest to R;, and thus
uniquely defined.

Note that the subband [L;, R;] ccw from L; to
R; (when viewed from z = 00) may not cover the
entire Z; (see Fig. 4b). However, we can show that
[L;, R;] is not too small either. In particular, [L;, R;]
contains at least two of the four monotone chains
of the orthogonally convex polygon T;. It is the
existence of these chains that ensures that any face
in Z;\[L;, R;] can be attached by a vertical strip to
one of the faces in [L;, R;].

Having fixed R; and L;11, we can now determine
the bridge R; — L;y1. If R; is adjacent to Z;41,
then R; and L;;; are adjacent and the bridge is
empty. Otherwise, let P be the plane bounding
the halfspace H(R;) and let C be the maximum
component that meets condition (2). The bridge
R; — L;y; is C*Us;(L;iq1), where C* is the piece of
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C that lies between P and the plane parallel to P
containing the vertical edge of L;;1 closer to P.

2.2 Unfolding T;, B; and Remaining Z;

Assume that the bridge R; — L;11 lies in H(R;) N
T;. To unfold T;, we partition the exposed parts of
T; into strips as follows. First we delimit the region
X of T; enclosed between two planes parallel to L;,
one that contains L; and the other passing through
the vertical edge of R; closer to L;. Refer to Fig. 4b.
We state without proof that X is entirely exposed.
Next we partition X into strips parallel to L; and
T; \ X into strips orthogonal to R;, as in Figs. 3b
and 4b. Each strip thus formed is precisely s;(f),
for some f in [L;, R;]; we attach s;(f) above/below
f', to complete the unfolding of T;. We similarly
unfold exposed faces of B; (except for By, which we
unfolded as one single piece).

A |U|f Top T,
4 5 c|D L LT [T T&”]
mla, ] [Fle] (o [
& ‘ ‘ ‘ “ R, - \L
R
Bottom B, .G
u D
B
Lo| 4 c
) EENC!

Figure 4: (a) An unfolding of S from Fig. 1 with
bridge G. (b) Partition of Ty into strips: A, B are
parallel to Lo, and C'...G are orthogonal to Ry.

If L; and R; are not adjacent in Z;, the subband
Z; \ [Li, R;] is yet to be unfolded. See Fig. 4b. We
attach faces f in Z;\ [L;, R;] to vertical strips s;(f)
already unfolded (see faces f; and f; from Fig. 4a).
On top of each such face f' we attach vertically
s;i_1(f), if any. At the end of this process, all ex-
posed faces of B; have been unfolded.

Suppose now that two parallel faces f; and f,
in Z; \ [L;, R;] are connected by a subband U of
Z; orthogonal to fi and fo. Let g1 and g» be the
faces at the other end of the flattened strips s;(f1)
and s;(fa). Then we cut Z; along the vertical edge
shared by g1 and g2, and reconnect s;(f1) and s;(f2)
by horizontal subband U. The case in which the
bridge lies in H(R;) N B;1 is handled similarly.
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Parameterization of 3D manifold mesh data involves embedding the mesh in some natural
parametric domain, such as the plane or the sphere. Parameterization is important for many
applications in geometry processing, including texture mapping, remeshing and morphing. The
main objective is to generate a bijective mapping between the mesh surface and the parametric
domain, which minimizes the distortion incurred in the transition in some meaningful sense.
Examples of possible distortion are metric (edge length) distortion, conformal (angular) distortion
and authalic (area) distortion.

A classical theorem of Tutte [7], originally designed to draw planar graphs, shows how to embed
a manifold graph with the topology of a disk in the plane. This is achieved by fixing its boundary
to a convex shape, and then solving a set of linear equations for the positions of the interior
vertices. These equations express the fact that every interior vertex is positioned at the centroid of
its neighbors. This basic method was later generalized by Floater [2] to arbitrary convex
combinations, and Tutte’s method could then be used to embed a 3D mesh in the plane,
controlling the distortion by using convex weights derived from the geometry of the mesh. This
class of embeddings are harmonic solutions of a discrete Laplace equation, namely requiring the
weighted graph Laplacian operator to vanish at all interior vertices, with convex boundary
conditions.

While Tutte’s basic method remains a popular parameterization method, the constraint of a
convex boundary is very severe, in most cases introducing unnecessary distortion into the result.
Beyond that, it does not provide a satisfactory method to parameterize closed genus-0 meshes and
meshes with higher genus. In this talk I will briefly survey some recent work of mine with
colleagues on various generalizations of Tutte’s method which overcome these problems.

Gortler, Gotsman and Thurston [3] provided conditions under which Tutte’s method produces
bijective embeddings even when the boundary is non-convex. This was used by Karni, Gotsman
and Gortler [5] to generate free-boundary planar embeddings with constraints.

Gotsman, Gu and Sheffer [4] showed how to generalize the theory of Tutte to embed a closed
genus-0 mesh on the sphere. This relies on recent algebraic characterizations of convex
embeddings due to Colin de Verdiere [1], and related eigenvector constructions due to Lovasz
and Schrijver [6]. In practice it involves solving a set of quadratic equations.

Inspired by recent work on discrete vector calculus, Gortler, Gotsman and Thurston [3] showed
how the concept of a one-form from differential geometry can be defined on a discrete mesh.
When such a one-form is harmonic, is may be used to generate bijective embeddings in the plane,
in analogy to the Tutte method. The theory culminates in a discrete version of the Hopf-Poincare
Index theorem, which may be used to provide a simple proof of the Tutte theorem, Moreover, it
shows very simply (using a mere counting argument) how to generate a doubly-periodic
embedding of the torus in the plane.
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Drawing Equally-Spaced Curves between Two Points
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(1) School of Information Science, JAIST, Japan
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1 Problem Definition

Given two points a and b in the plane, draw n equally-
spaced curves, C;,Cy, . ..,C, between them. More for-
mally, those curves must satisfy the equi-distant prop-
erty: for any point p on any such curve C;,1<i<n
the two adjacent curves Cj_; and Ci1 are equally dis-
tant, that is, d(p,Ci—1) = d(p,Ci+1), where d(p,C) is
the distance from p to the point on a curve C that is
closest to p. We define Cy = a and Cpy1 = b as de-
generate curves. So, we have d(p,G) = d(p,a) and
d(p,Cns1) =d(p,b).

This problem is related to wire routing in printed cir-
cuit boards. In a new production technology more than
one wires can be put between two pins. Then, it is de-
sired to draw those wires so that they are equally spaced
due to electrical constraints.

Itis easy to draw one curve (line) between two points.
It is simply a perpendicular bisector of the two points. It
is also rather easy to draw three equally-spaced curves.
The middle one is the perpendicular bisector of the two
points and the remaining two curves are parabolas, each
of which is a curve equidistant from a point and a line.

The case n= 2 is not easy. In this short paper we
prove that we can draw two such equally spaced curves
although we have no analytic equations for the curves.

2 Basic Properties of the Curves

For simplicity but without loss of generality we fix the
two points a and b: a=(3,0) and b = (—3,0). We
denote the two curves by C, and C,, which are charac-
terized as follows:

(1) For any point p on Cy, d(p,a) = d(p,Cp), and

(2) for any point pon Cy, d(p,b) = d(p,Ca).

The curves C; and C, must pass through the
points (1,0) and (—1,0), respectively, and the distance
d(p,Cy), for example, is given as the length of a line
segment directed from p perpendicularly to the curve
Ca.

Now, take any point pon Ca. Then, we have d(p, a)
d(p,Cyp) It implies that the circle centered at p with the
point a on it must be tangent to the curve Cy, at a unique
point, which is denoted by qp. The point gp on Cy, is
called an image of the point p on C,.

Fig. 1 shows this tangential property.
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Figure 1: Tangential property.

By this tangential property we can guess a rough
shapes of C5 and Cy,, that is, they are smooth and convex
toward the origin since they are envelopes of circles. As
a point p goes to infinity along the curve Cj, the radius
of its associated circle approaches to infinity, and finally
it converges to a line.

3 Drawing Curves

The properties described above suggest equations spec-
ifying the curves C, and Cy, but it seems to be hard to
obtain analytic representations of the curves. Our strat-
egy here is to compute rough shapes of the curves. For
that purpose, we partition the plane into small squares
of side length £ and remove all squares that cannot in-
tersect the curves (see Fig. 2 for illustration). Due to the
symmetry of the curves Cy and Cy, we only consider C,.

Given a value of € > 0, the plane is partitioned
into squares. Each such square is specified by two-
dimensional indices, as

s,j = [ie, (i+1)e] x [je, (j+ 1)e]. @

We start with finding a square sp j which contains the
point (1,0), the intersection of the curve C, with the x-
axis, and then remove all other squares with i = 0. At
i =1, we take squares near the square s j containing
(1,0) and check their feasibility.

Feasible squares are defined as follow:
(1) The square containing the point (1, 0) is feasible.
(2) A square s j is feasible if there exists a feasible
square s j such that

() i'<i,



dmax (

Sivjvsi 4

Figure 3: Two curves drawn by our approximation algo-
rithm.

(i) [dmin(S,},@),dmax(Si,},@)] N [dmin(S,j, St — 1),
Omax(S.,j,S1,—j1)] # 0, and

(iif) there exists no square s j
dmax(S.,j,S7, =) < Omin(S,j,d),

such that

where note that if a square s j on the curve Cj is feasible
then the square 5 _j is a feasible square on the curve C,,
Omin(S,j,@) and dmax(S;,j, @) are the minimum and max-
imum distances between the square s j and the point a,
and dmin(s,s) and dmax (s, s') are the minimum and max-
imum distances between two squares sand s.

Once we have feasible squares § j, S j+1, - .., Sk fori,
a set of feasible squares for i+ 1 should start somewhere
around j and end somewhere near k on i+ 1. Fig. 3
shows our implementation result.

4 More Characterizations

There are some curves and lines that characterize the
equally-spaced curves C4 and Cy,. Because of sym-
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metricity of the curves we only consider the upper
halves of C; and C,,.

What is an optimal pair of half lines to approximate
them to minimize the error? Because of their symmitric-
ity, we can assume that a pair y = cx+d,x> 0 and
y = —cx+d,x < 0 is optimal, where ¢,d > 0. An er-
ror for a point p(x,y) on y = cx+d is given by the
difference between the distance from p to a and the
length of a perpendicular line segment from pto the line
y = —cx+ d. If we denote the other endpoint of the seg-
ment by (X,y'), then the difference d is given by

d = /=12 +y2 -/ (x=x)2+ (y—y)?

(=124 = (x=X)’— (y—y)?
V=12 Y2+ (x=x)2+ (y—Y)?
For this difference to converge as x goes to infiity, the
coefftient of X% in the numerator must be 0, that is, c =

1.
Now, the difference is simplifed to

2(d—1)x+1+d?

4= VX124 (x+d)2+v22

It is minimized when d = 1. In fact, whenc=d =1,
the difference converges to 0 as x goes to infity.

We have shown that an optimal pair of half lines to
approximate the curves is given by y = x+1,x > 0 and
y = —X+1,x< 0. However, it does not imply that they
are asymptotes of the curves. For any point p on Cj its
corresponding point g, on Cy, that is closest to p on Cy,
is defed as the image of p. If we move a point p along
C, toward infhity, its image also moves on Cy, in the
direction away from the origin. Then, does it also go to
infiity? The answer is no. Images cannot go beyond
some point 4. on Cp,.

This also means that if a point p on C, is sufftiently
far away from the origin then it must be close to the
bisector of the two points a and q... So, the bisectors
can be considered as the asymptotes of our curves.

% Future Direction

We are now working on a Voronoi diagram based on the
curves defned here. We call it a Voronoi diagram with
neutral zones. We have obtained preliminary results.
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A Distributed Architecture for the Visualization of
Geometric Models

Sourav Dalal*

The geometric aspects of the visualisation of large
data sets, in particular, digital models of real or
planned solid objects in a heterogeneous distributed
environment are investigated. One of the fundamen-
tal problems of rendering is visibility determination;
the process of deciding what parts of the surface
of the model can be seen from a possibly moving
point. Any algorithm for determining the visibility
of a set of polygons in three-dimensional space with
a total of N edges takes ©(N?) time in the worst
case. This growth rate is a serious difficulty. To
overcome it hardware accelerators are used in low-
end systems, and parallel algorithms are proposed
for high-performance graphics systems. For example,
the hidden-line problem can be solved in ©(log N)
time either on N2 EREW or on N%/log N CREW
PRAM processors, and the hidden-surface problem
in the same O(log N) time on N> CREW PRAM
processors. The ©(log N) result cannot be further
improved even if arbitrarily many processors were
available [2, 3]. Algorithms with a smaller number
of processors, called coarse-grain algorithms, can also
be derived from these results, e.g., a hidden-surface
algorithm that takes O(&lggﬂ + log N) time in the
worst case by using p CREW PRAM processors [3].

Unfortunately, parallel architectures either suffer
from the problem of latency or do not scale well,
hence are expensive. Using distributed shared mem-
ory (DSM) running on a network of workstations [1]
seems to be a better alternative. There are some
drawbacks, however, e.g., overhead: if a processor
needs to access a variable available only on a remote
machine, the whole page must be transferred. Ex-
perts like Tanenbaum and van Steen [5] are scepti-
cal: “After almost 15 years of research on distributed
shared memory, DSM researchers are still struggling
to combine efficiency and programmability. To attain
high performance on large-scale multicomputers, pro-
grammers resort to message passing despite its higher
complezity compared to programming (virtual) shared
memory systems. It seems therefore justified to con-

*London South Bank University, London, 103 Borough
Road, London, SE1 0AA, UK, email: fl.devai@lsbu.ac.uk

Frank Dévai*

Md Mizanur Rahman*

clude that DSM for high-performance parallel pro-
gramming cannot fulfil its initial expectations.”

The objective of this research is the design and im-
plementation of a light-weight, inexpensive message-
passing architecture for the visualisation of large ge-
ometric models. This system also uses networks of
workstations, typically available in a university envi-
ronment, but unlike DSM, it is a more efficient ap-
proach using scanline algorithms. A scanline is a row
of pixels of the image. The pixels of a scanline can be
obtained by determining the visibility of the objects
in the plane perpendicular to the screen and contain-
ing the scanline. The intersection of a polygon-mesh
model (i.e., a set of polygons) and a plane is a set of
line segments in the plane.

Our system is based on a client-server architec-
ture, where a number of servers support typically one
client. Each server is responsible for the calculation
of a couple of scanlines, and the delivery of the results
back to the client which displays the image.

The operation of the system is outlined as follows.
The user, sitting in front of a graphics workstation
running the client software, selects a geometric model
or virtual environment they want to visualize. Once
the geometric model has been selected, the client soft-
ware distributes the corresponding data set on a high-
speed network by using scalable reliable multicast. All
workstations having the server software installed pick
up the model, and store it on their local disk. On
user interaction, e.g., zoom, translation or rotation of
the model, the client broadcasts a 4x4 homogeneous
transformation matrix. All the available servers re-
ceiving this matrix perform the required transforma-
tion on their stored model.

Each server is associated with a unique name,
which is an integer in the range [0,m — 1], where
m is the total number of the available servers at any
given point of time. In reply to a client request, each
server calculates a number of scanlines. Scanlines are
numbered from 0 to h — 1, where h is the height of
the image, i.e., the total number of scanlines on the
screen of the client’s workstation. Server k calculates
scanlines 1 = k + jm, for j = 0,1,2,..., such that
1 < h, and sends them back to the client.
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The client then assembles the scanlines, and dis-
plays the next frame. It also calculates a new trans-
formation matrix from user input, gathers server
statistics, rename servers if necessary and informs
each server involved. Then it goes back to the begin-
ning of the loop broadcasting a new transformation
matrix and requesting scanlines.

In the unlikely case of the output of a single server
is lost, the scanlines from the previous frame are used.
Often there is no difference between the same scan-
lines of subsequent frames (e.g., when a designer is
contemplating a part of the model) and the differ-
ence is hardly noticeable on moving images. (Note
that the scanlines are delivered by the servers in an
interleaved pattern: a scanline from server k is fol-
lowed by one from server k + 1, and so on.)

If, however, the client notices from server statistics
that the output of a server is consistently lost in the
last few frames, the client renames the servers: If, say,
server k is not responding, server m — 1 is renamed
as k, and m is reduced by 1. If a server re-appears,
it is given the name m, and m is incremented by 1.

From the above it follows that the system is fault
tolerant in the sense that it tolerates both lost mes-
sages and server failures. The latter is particularly
important, because in this way the workstations do
not have to be dedicated to the system. The servers
run on workstations as background processes; when a
workstation gets idle, the server joins the system, and
it leaves the system when preempted by an interac-
tive process. Thus, the hardware cost of the system is
negligible, as organizations like universities or design
offices already have extensive workstation networks.

Another significant advantage of the proposed ar-
chitecture is that the servers only need to com-
pute a planar visibility problem with a complexity of
O(nlogn) rather than the 3D problem of complexity
O(N?), where n < N is the number of line segments
in the plane of the scanline. The planar visibility
problem is well understood, and this research gave us
the opportunity to implement 10 scanline algorithms,
and analyse their asymptotic resource requirements.

Asymptotic analysis, however, cannot take into
consideration constant factors, which can be differ-
ent in different environments. Therefore a portable
testbed was developed for the comparative evaluation
of the actual performance of the algorithms on the
particular hardware-software platform they are used.
In this way in a heterogeneous distributed system the
fastest version of the server can be installed in any
given machine environment.

Considering the number of possible algorithms to-
gether with their variants, the number of time mea-
surements required for conclusive results is substan-

tial, hence using real 3D models would be too ex-
pensive and time consuming. Since the input to a
scan-line algorithm is only a planar set of line seg-
ments, a more efficient test-data generation method
based on random line segments was developed.

As some scanline algorithms exploit the fact that
the input obtained from real solid models results in a
set of line segments that are non-intersecting (except
at their endpoints) a test-data generation method was
required to produce a planar set of non-intersecting
random line segments. Our method takes a total of
4n random numbers and O(nlogn) time in the worst
case to generate 4n coordinates for a set of n non-
intersecting random line segments in the plane.

The Java language was used for both the devel-
opment of a prototype distributed system and the
testbed. Since the running time of scanline al-
gorithms is very short, accurate time-measurement
techniques are required. These were implemented by
reading the time-stamp counters of the processors us-
ing Java native methods.

Though the planar visibility problem is well re-
searched, we encountered some interesting problems
which, we believe, are unsolved. For example, one
of our algorithms, called the priority-queue method,
gave better than expected experimental results. This
algorithm uses a heap to maintain an order on line
segments. It is known that n elements can be in-
serted in a heap in O(n) expected time, but deleting
the minimum element takes ©(logn) time on average
[4]. Our algorithm, however, deletes arbitrary ele-
ments, which are near to leaf nodes most of the time,
thus repairing the heap costs little. So far, however,
we could not turn our arguments into a formal proof.
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Pointed Binary Encompassing Trees: Simple and Optimal
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Abstract. For n disjoint line segments in the plane
we can construct a binary encompassing tree such
that every vertex is pointed, what’s more, at every
segment endpoint all incident edges lie in a halfplane
defined by the incident input segment. Our algorithm
runs in O(nlogn) time which is known to be optimal
in the algebraic computation tree model.

Introduction. Interconnection graphs of disjoint
line segments in the plane are fundamental structures
in computational geometry, and often more complex
objects are modelled by their boundary segments or
polygons. One particularly well-studied example is
a crossing-free spanning graph: the encompassing
graph for disjoint line segments in the plane is a con-
nected planar straight line graph (PsLc) whose ver-
tices are the segment endpoints and that contains
every input segment as an edge.

A simple construction shows that not every set of n
disjoint segments in the plane admits an encompass-
ing path. But there is always a path that encompasses
O(logn) segments and does not cross any other input
segment [6]. The question, whether encompassing
trees of bounded degree exist, was answered in the
affirmative by Bose and Toussaint [4]. Later Bose,
Houle and Toussaint [3] constructed an encompass-
ing tree of maximal degree three in O(nlogn) time
and proved that the runtime is optimal.

Recently, Hoffmann, Speckmann, and Téth [5]
have shown that for every set of disjoint segments a
pointed binary encompassing tree can be constructed
in O(n*/3logn) time. A PSLG is pointed iff at every
vertex p all incident edges lie on one side of a line
through p.

Csaba D. Téth
Department of Mathematics
MIT, Cambridge, MA 02139

toth@math.mit.edu

Pointed PsrGs are tightly connected to mini-
mum pseudo-triangulations, which have numerous
applications in motion planning [10], kinetic data
structures [8], collision detection [1], and guard-
ing [9]. Streinu [10] showed that a minimum pseudo-
triangulation of V' is a pointed PSLG on the vertex
set V with a maximal number of edges. As opposed
to triangulations, there is always a bounded degree
pseudo-triangulation of a set of points in the plane [7].
A bounded degree pointed encompassing tree for dis-
joint segments leads to a bounded degree pointed en-
compassing pseudo-triangulation, due to a result of
Aichholzer et al. [2].

In this paper, we improve all previous results on
encompassing trees of n segments and give a simple
algorithm to construct a pointed binary encompass-
ing tree in optimal O(nlogn) time. Moreover, for
every vertex of the tree all incident edges lie on one
side of the line through the incident input segment.

Theorem 1 For a set S of n disjoint line segments
in the plane, we can build in O(nlogn) time a binary
encompassing tree such that for every segment end-
point p of every input segment pq the edges incident
to p lie in a halfplane bounded by the line through pq.

Tunnel Graphs. The free space around the seg-
ments can be partitioned into n 4 1 convex cells! by
the following well known partitioning algorithm: For
every segment endpoint p of every input segment pgq,
extend pg beyond p until it hits another input seg-
ment, a previously drawn extension, or to infinity.

LFor simplicity, we assume that no three segment endpoints
are collinear.
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(a) Partition.

(b) Tunnel Graph.

(c) Encompassing Tree. (d) Disconnected.

Fig. 1: An example for a partition with an assignment (a), the corresponding tunnel graph (b), and the
resulting tree (c). A partition for which no assignment gives a connected tunnel graph (d).

Consider a set of segments S and a convex partition
P(S) obtained by the above algorithm. Let us assign
every p to an incident cell 7(p) of the partition. A key
tool in our proof is the tunnel graph T'(S, P(S), T) of
P(S) and the assignment 7, defined as follows: The
nodes of T correspond to the convex cells of P(S5),
two nodes a and b are connected by an edge iff there
is a segment pg € S such that 7(p) = a and 7(q) = b.
It is easy to see that the tunnel graph is planar. As
T has n + 1 nodes and n edges, it is connected iff it
is a tree.

Theorem 2 For any set S of n disjoint line seg-
ments, we can construct in O(nlogn) time a convex
partition P(S) and an assignment T such that the
tunnel graph T'(S, P(S),T) is a tree.

We note that Theorem 2 does not hold for every par-
tition: Fig. 1(d) shows 7 disjoint line segments and
a convex partition such that there is no assignment
for which the tunnel graph is connected. The proof
of Theorem 2 can be found in the full version of this
paper. Our main result follows from Theorem 2.

Proof of Theorem 1. Consider a partition P(S)
and an assignment 7 provided by Theorem 2. In each
cell connect the segment endpoints assigned to it by
a simple path.

The resulting graph is clearly a PSLG that en-
compasses the input segments. The maximal degree
is three because we add at most two new edges at

every segment endpoint. It remains to prove con-
nectivity. Let p and r be two segment endpoints.
We know that the tunnel graph is connected, so
there is an alternating sequence of cells and segments

(a1 = 7(p),p1q1,0a2,...,pk-1qk—1,ar = 7(r)) such
that 7(p;) = a; and 7(¢;) = ai41, for every i. As
all segment endpoints assigned to the same cell are
connected, this path corresponds to a path in the en-
compassing graph. |
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1 Introduction

In computer graphics, a common way of represent-
ing objects is with their triangulations. The perfor-
mance of operations executed on these objects depends
highly on how their surfaces are triangulated and how
thesetriangles are transmitted to the processing engine.
Thus, to speed up many operations, such as rendering
or compression [9, 10], it is desirable that triangles be
arranged such that their adjacency information is pre-
served.

In this paper we present a sparse vertex-adjacency
dual of a polygon triangulation, which is a graph that
preserves the vertex-adjacency information of the tri-
angles and contains a Hamiltonian cycle. The size of
thisgraphislinear in the number of polygonal vertices.

Effort has been made to design algorithms that pro-
duce Hamiltonian triangulations, where the dual graph
of thetriangulation is a path. In[1], Arkin et al. show
that any set of n points has a Hamiltonian triangula-
tion and describe two algorithms which construct such
triangulations. They also show that the problem of de-
termining whether a polygon (with holes) has a Hamil-
tonian triangulation is NP-compl ete. In the same paper,
asequential triangulation of a set of pointsis defined to
be a Hamiltonian triangulation whose dual graph con-
tains a Hamiltonian path, and it is proved that such
triangulations do not always exist for any given set of
points.

Hamiltonian properties of general triangulations
have been studied extensively. Variousresults that con-
struct a Hamiltonian cycle in a given triangulation can
be classified based on the model considered. In one
model, the given triangulation is allowed to be modi-
fied by adding new vertices or Seiner points. In [7],
Gopi and Eppstein present an algorithm for construct-
ing a Hamiltonian cycle in a given triangulation by in-
serting new vertices within existing triangles.

In the second model, the input triangulation cannot
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be modified. In this case, the problem isthat of arrang-
ing adjacent trianglesin some order such that the result-
ing graph contains a Hamiltonian cycle. An important
property here is how adjacency is defined. In the dual
graph of atriangulation, adjacency is defined as edge-
adjacency where two triangles are adjacent when they
share an edge. Unfortunately, it is not always possible
to find Hamiltonian cyclesin the dual graph.

Hamiltonian cycles in triangulations are studied
when adjacency is defined as vertex-adjacency, where
two triangles are considered to be adjacent if they share
at least one vertex. In [5], a triangulation is repre-
sented with a vertex-facet incidence graph which has
a vertex f for each facet (triangle), a vertex v for
each triangle-vertex and an edge (v, f) whenever v is
a vertex of triangle f. A facet cycle is defined by
a wak (’UQ, fl, U1, fQ, V2, vy fk, Vk, fo,’UQ) where no
arc is repeated and that includes each facet vertex ex-
actly once, but may repeat triangle-vertices. The au-
thors prove that any triangulation has a facet cycle if
it is not a checkered polygonal triangulation - that is if
it does not have a 2-coloring of the triangles such that
every white triangleis adjacent to three black ones.

A similar result under the same facet cycle model
isfound in [2]. Here, Bartholdi I1l and Goldsman re-
fer to general triangulation as Triangulated Irregular
Networks (TINs). The authors describe an algorithm to
construct a cycle in a 2-adjacent TIN (a triangulation
in which each triangle shares an edge with at least two
other triangles). Their algorithm runsin O(n?) timein
the worst case.

In [4], Chen, Grigni and Papadimitriou define the
map graph of aplanar subdivision P (or amap) to bea
graph G wheretheverticesof G correspond to the faces
of P andtwo verticesu and v are adjacent if their corre-
sponding facesin P share any point on their boundary.
This characterization is equivalent to the dual graph of
a triangulation in which two vertices . and v of the
dual are connected by an edge whenever the triangles



corresponding to v and v share a triangular edge or a
triangular vertex. Chen et a. study sparsity and color-
ing of map graphs.

Bartholdi 111 and Goldsman [3] introduce the same
concept of a map graph that they cal the vertex-
adjacency dual of a general triangulation. The authors
show that the vertex-adjacency dual contains a Hamil-
tonian cycle, and they describe a linear time algorithm
to construct such a cycle. Here we note that the model
described in [3] is avariation of the facet-cycle model
described in [5]: In the facet cycle model a continuous
walk enters every triangle from a vertex v and leaves
from a different vertex «. In the vertex-adjacency dua
model, v and v are alowed to be the same vertex. The
vertex-adjacency dual described in [3] can have O(n?)
edges in the worst case. Here we consider linear size
subgraphs of the vertex-adjacency dual that still contain
Hamiltonian cycles, and that may be computed in lin-
ear time. We call such graphs sparse vertex-adjacency
duals.

2 Constructing a Sparse Vertex-
Adjacency Dual

Here we illustrate an approach with the simple case of
sequential triangulations [6].

Let P beasimple polygonwithn verticesand let Tp
be a sequential triangulation of P. We will refer to the
vertices of P as polygonal vertices and to the vertices
of the dual graph D of T as dual vertices.

To construct the sparse vertex-adjacency dual of
Tp, first construct its dual graph D, which in this
case is a path. Then, for every polygona vertex
vp, if vp is shared by k£ > 2 consecutive triangles
ty,to,...,tr, iNnsert an edge between the first and
last triangles ¢; and t;. The resulting graph G is a
sparse vertex-adjacency dual. To show that it contains
a Hamiltonian cycle, consider the following. In the
dua graph D of Tp every consecutive vertices u, v
and w are vertex-adjacent. Thus, connecting every « to
w in the sparse vertex-adjacency dual is equivalent to
connecting the vertices which are at distance 2 apart.
The resulting graph is known as the square of D. In
[8], it is shown that if removing the leaves of atree T'
produces a path, then the square of 7" is Hamiltonian.
In our case, our tree is the dual graph D, which will
still be a path if we removeits leaves. Thus, from the
resultsin [8] we can conclude that our construction for
a sequentia triangulation yields a Hamiltonian cycle
(figure 1).
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Figure 1. The sparse vertex-dua of a sequential tri-
angulation is equivalent to the square D? of the dual

graph D.

We can show that for any serpentine triangulation,
the above construction will produce a graph that con-
tains a Hamiltonian cycle. For general polygonal tri-
angulations however, this construction needs a dight
modification in order to contain such acycle while pre-
serving adjacency information of the triangles.
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1. Introduction

Simultaneous embedding of planar graphs is related to
the problems of graph thickness and geometric thickness.
Techniques for simultaneous embedding of cycles have
been used to show that the degree-4 graphs have geomet-
ric thickness at most two [3]. Simultaneous embedding
techniques are also useful in visualization of graphs that
evolve through time.

The notion of simultaneous embedding is related to
that of graph thickness. Two vertex-labeled planar graphs
on n vertices can be simultaneously embedded if there
exist alabeled point set of size n such that each of the
graphs can be realized on that point set (using the vertex-
point mapping defined by the labels) with straight-line
edge segments and without crossings. For example, any
two paths can be simultaneously embedded, while there
exist pairs of outerplanar graphsthat do not have asimul-
taneous embedding.

In this paper we present new results about embedding
labeled trees and outerplanar graphs on labeled tracks,
as well as related results on simultaneous embedding
of tree-path pairs. In particular, we show that labeled
trees cannot be embedded on labeled parallel straight-line
tracks, but they can be embedded on labeled concentric
circular tracks; see Fig. 1. The results generalize to out-
erplanar graphsaswell. We also show that tree-path pairs
can be simultaneously embedded when edges of the path
are represented by circular arcs. Finally, we show how to
embed a straight-linetree and apath with O (log n)-bends
per edge, where n is the number of vertices.

1.1. Related Work

The existence of straight-line, crossing-free drawings for
a single planar graphs is well known [5]. The exis-
tence of simultaneous geometric embeddings for pairs of
paths, cycles, and caterpillars is shown in [1]. Counter-
examples for pairs of genera planar graphs, pairs of
outer-planar graphs, and triples of paths are also pre-
sented there. It it not known whether tree-tree or tree-path
pairs allow simultaneous geometric embeddings. If the

*This work is partialy supported by the NSF under grant ACR-
0222920 and by ITCDI under grant 003297.

32

straight-line edge conditionisrelaxed, it is known how to
embed tree-path pairs using one bend per tree edge and
how to embed tree-tree pairs using at most 3 bends per
edge[4].

A related problem is the problem of graph thick-
ness [7], defined as the minimum number of planar sub-
graphs into which the edges of the graph can be parti-
tioned into. Geometric thicknessis aversion of the thick-
ness problem where the edges are required to be straight-
line segments [2]. Thus, if two graphs have a smultane-
ous geometric embedding, then their union has geomet-
ric thickness two. Similarly, the union of any two planar
graphs has graph thickness two. Simultaneous geometric
embedding techniques are used to show that degree-four
graphs have geometric thickness two [3].

Simultaneous drawing of multiple graphs is also re-
lated to the problem of embedding planar graphs on a
fixed set of pointsin the plane. Severa variations of this
problem have been studied. If the mapping between the
vertices V' and the points P is not fixed, then the graph
can be drawn without crossings using two bends per edge
in polynomial time[6]. However, if the mapping between
V and P isfixed, then O(n) bends per edge are necessary
to guarantee planarity, where n is the number of vertices
inthe graph [8].

1.2. Our Contributions

We begin with results on track embeddability. Given a
set of labeled parallel lines (tracks) L;, 1 < i <nanda
tree T = (V, E) with n verticeslabeled with the numbers
1 though n, it is not always possible to obtain a straight-
line crossings-free drawing of 7' such that vertex v; ison
track L;; see Fig. 1(a). However, if the tracks are con-
centric circles, such drawings are always possible and
we describe a linear time algorithm for obtaining such
drawings, see Fig. 1(b). The algorithm easily generalizes
to outerplanar graphs as well. Thus, parallel line tracks
do not allow tree or outerplanar embeddings on predeter-
mined tracks, while circular tracks do. Tracks defined by
circular arcs, stairs, sin-waves also suffice; see Fig. 2.
Our motivation for the problem of track embeddings
comes from two open problems in simultaneous geomet-
ric embedding. Formally, in the problem of simultane-



Figure 2: A tree drawn on various staircases: (a) staircase; (b) sin(z); () x sin(z); (d) z — |z].

ous geometric embedding we are given two planar graphs
Gy, = (V,Ey) and G2 = (V, E>) and we would like to
find plane straight-linedrawings D, and D such that for
all verticesv € V thelocation of the corresponding ver-
ticesin D, and D is the same (i.e., D;(v) = D;(v)).
While path-path, cycle-cycle, caterpillar-caterpillar pairs
can be simultaneously embedded, it is hot known whether
tree-tree or tree-path pairs have such embeddings.

The circular track layout of trees and outerplanar
graphs can be used to obtain simultaneous embeddings
of tree-path pairs so that the tree edges are straight-line
and crossings-free and the path edges are crossings-free
circular-arc segments. Moreover, the staircase layout of
trees can be used to obtain simultaneous embeddings of
tree-path pairs so that the tree edges are straight-line and
crossings-free and the path edges are crossings-free and
have at most log n bends per edge.
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Abstract

The connectivity coder by Touma and Gotsman encodes
a planar triangulation through a sequence of vertex de-
grees and occasional “split” symbols that have an asso-
ciated offset value. We show that the split offsets of the
TG coder are not redundant by giving examples of degree
sequences that have two different decodings if the split
offsets are not specified. Surprisingly, such examples are
rare and a large number of encodings remain unique.

1 Introduction

Recent years have seen a number of schemes that com-
pactly encode triangle mesh connectivity by a sequence
of symbols that specify how to grow a “compression
boundary” enclosing an already encoded region, one tri-
angle at a time. A popular scheme is the Triangle Mesh
Compression method by Touma and Gotsman [7], or TG
coder for short. For planar triangulations, the TG coder
generates a sequence of vertex degrees that usually con-
tains a few “split” symbols with associated offset values.

There has been speculation that it might be possible to
modify the TG coder to operate without explicitly stor-
ing the offsets values. The Cut-border Machine [3] and
Dual-Graph Method [5] explicitly include split offsets,
but the otherwise identical Edgebreaker [6] and Face-
Fixer [4] schemes avoid them, getting by only with the
“end” symbols in the code sequence. However, the TG
coder does not store explicit “end” symbols. It maintains
more state information on the compression boundary than
Edgebreaker or Face Fixer that—together with explicit
offsets—makes “end” symbols implicit. But if we omit
the offsets we can find sequences with two valid decod-
ings even if we add explicit “end”s to the code sequence.

2 Connectivity coding with the TG Coder

To encode a triangulation, the TG coder [7] grows an
encoded region, maintaining one or more compression
boundaries into which it includes triangle after triangle.
It usually includes the triangle adjacent to the gate edge,
which advances in clockwise order around the focus ver-
tex. However, it immediately includes any triangle that
shares two edges with the compression boundary.
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Figure 1: The smallest scenarios where an offset-less encoding

with “split” and “end” symbolsis not unique occur in triangula-
tions of 11 vertices. The top right example, however, is unique.

The encoder starts with an compression boundary of
length two around an arbitrary edge, records the degree of
the two initial boundary vertices, and sets their slot count
to be one less than their degree. Whenever all boundary
vertices have a slot count of one or higher, the triangle
adjacent to the gate shares only one edge with the com-
pression boundary. Usualy the third vertex of the trian-
gle at the gate is a previously unprocessed vertex, and
the encoder simply “adds’ this vertex as a new bound-
ary vertex and records its degree. Occasionaly, the third
vertex of thistriangleis already on the boundary, and the
encoder splits the compression boundary into two loops,
temporarily stores one on astack, and continues encoding
on the other. Here the encoder records a split symbol and
offset, which is the number of dotsthat are on the bound-
ary part that is stored on the stack, from which it can de-
rive how many slots are clockwise along the boundary
between the gate and the split vertex.

In the full paper we consider four offset-less encod-
ings, each with lessinformation about the split operations
that occur during the encoding process. The strongest is
if we omit the offset, but still record “end” symbols that
mark the completion of a boundary loop. Figure 1 illus-
trates the smallest examples for which this encoding is
non-unique: in triangulations with 11 vertices there are



two possible ways of splitting the boundary of length 6
that hasits 16 dotsdistributed in this particular configura-
tion and where both resulting boundary parts still enclose
two unprocessed vertices of degree 3 and 4. However,
there are not always two valid decodingsin this scenario.
Sometimes the focus is already connected to other ver-
tices of the boundary through previously decoded trian-
gles. This places additional constraints on the possibili-
tiesfor splitting the boundary. The top-right triangulation
from Figure 1, for example, has only one valid decoding.

Theorem. For the TG coder without split offsets, but with
end symbols, there exist two different triangulations that
have the same offset-less encoding.

3 Searching for valid decodings

In order to find al valid decodings of an offset-less en-
coding we search through all possibilities of performing
split operations. For each attempt it recursively starts to
decode the first boundary part and in case thisis success-
ful does the same for the second. Only if both recursions
are successful it returns a success, otherwise it tries out
the next possibility or returns a failure if there are none
left. A few observations help usto immediately eliminate
some splits from further consideration.

Initial experiments seemed to indicate that the split off-
sets of the TG coder might in fact be replaced by “end’s.
On our standard set of example meshes the search for
split offsets would find the correct answer every run we
tried. Table 1 shows that non-unique encoding are sur-
prisingly rare. The full paper has further experiments
showing that only a small fraction of random triangula-
tions have non-unique encodings.

4 Closing discussion

There have been attempts to establish a guaranteed bound
on the coding costs of the TG coder. However, the infre-
guently occuring “split” symbols and their offsets made
this a difficult task. Our work shows that these split off-
sets are not completely redundant. There remains the
task of determining if any degree-based coder can avoid
offsets. Alliez and Desbrun [1] suggested an adaptive
traversal heuristic that lowered the number of split oper-
ations and the remaining number of “splits’ seemed neg-
ligibly small. Therefore the authors restricted their worst
case analysis to the vertex degrees. But Gotsman [2] has
shown that the entropy analysis of Alliez and Desbrunin-
cludes many degree distribution that do not correspond to
actua triangulations, and that there are fewer valid per-
mutations of degrees than triangulations and that addi-
tional information is necessary to distinguish between.
So split information does contribute a small but neces-
sary fraction to the encoding.
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meshes splits non-unique
name | vertices|encodings|min|max| avg | encodings
cow 2904 17,412| 13| 22 |16.8 0
fandisk 6,475 38,838/ 0 | 12 | 3.3 0
horse 48,485| 290,898| 7 | 29 [154 9
dinosaur | 56,194| 337,152| 27 | 56 |40.4 10
rabbit 67,039 402,222| 0 | 27 | 9.0 56
armadillo|172,974|1,037,832| 36 | 76 |55.2 146

Table 1: We show several meshes with their histograms of
splits. The table lists numbers of vertices and encodings, split
statistics, and number of non-unique encodings for each mesh.

References

[1] P Alliez and M. Desbrun. Valence-driven connectivity en-
coding for 3D meshes. In Proceedings of Eurographics’01,
pages 480489, 2001.

C. Gotsman. On the optimality of valence-based connec-
tivity coding. Computer Graphics Forum, 22(1):99-102,
2003.

S. Gumhold and W. Strasser. Real time compression of tri-
angle mesh connectivity. In Proceedings of SIGGRAPH’98,
pages 133-140, 1998.

M. Isenburg and J. Snoeyink. Face Fixer: Compressing
polygon meshes with properties. In Proceedings of SIG-
GRAPH’00, pages 263270, 2000.

J.Liand C. C. Kuo. A dual graph approach to 3D triangular
mesh compression. In Proceedings of ICIP’98, pages 891—
894, 1998.

J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transanctions on Visualization and
Computer Graphics, 5(1):47—61, 1999.

C. Toumaand C. Gotsman. Triangle mesh compression. In
Proceedings of Graphics Interface’98, pages 26-34, 1998.

(2]

(3]

(4]

(5]

6]

35



Fast almost-linear-sized nets for boxes in the plane

Hervé Bronnimann*
Jonathan Lenchner
CIS, Polytechnic University, Six metrotech, Brooklyn, NY 11201, USA.

1 Introduction

Let B be any set of n axis-aligned boxes in R%, d >
1. For any point p, we define the subset B, of B as
B, ={B € B:p e B}, Abox Bin B, is said
to be stabbed by p. A subset N' C B is a (1/c)-net
for B if N, # 0 for any p € R? such that |B,| < n/c.
The number of distinct subsets B, is O((2n)?), so the
set system described above has so-called finite VC-
dimension d. This ensures that there always exists
(1/c)-nets of size O(dclog(dc)), and that they can be
found in time O4(n)c?, using quite general machinery
(see for example the books by Matousek [3] or by
Pach and Agarwal [7]). For some set systems, such
as halfplanes in R? and translates of a simple closed
polygon, it was shown that there exist (1/c)-nets of
size O(c) [4]. This was extended to halfspaces in R3
and pseudo-disks! in R? [2].

In this paper, we investigate a fast, O(nlog c)-time
construction of (1/c)-nets of size O(c) for any value
1 < ¢ <nandd=2. Until right before JCDCG, 1
thought I could prove the following (which unfortu-
nately remains a conjecture):

Conjecture 1 Let B be a set of n axis-aligned bozes
in R? and ¢ be any parameter 1 < c <n. Then there
exists a (1/c)-net N for B of size O(c).

We can prove this result and also provide algorithms
that run in time O(nlog ¢) only for special cases: seg-
ments on the real line (the one-dimensional case),
quadrants of the form (—oco,x] x (—oc,y] in R?, and
unbounded boxes of the form [z1, z2] X (—o0, y| (which
we call a skyline). For the general case of boxes, we
can prove a size bound of O(cloglog ¢). But the con-
jecture still stands.

*Research of this author has been supported by NSF CA-
REER Grant CCR-0133599.

n this context, a collection of shapes is called a pseudo-
disk set system if given any three points, there is at most one
shape in the collection whose boundary passes through these
three points.

2 Intervals on the line

We first prove that it is easy to find small nets for
intervals on the line, the one-dimensional case of the
problem above.

Theorem 2 Let B be a set of n intervals on the real
line R and ¢ be any parameter 1 < ¢ < n. There
exists a subset N of at most 2[c — 17 bozes in B that
is a (1/c)-net for B. Such a set can be found in O(n+
nlogc) time.

3 Rectangles in the plane

We generalize the method of the previous paragraph
to the plane. We begin with the easier problem when
all the boxes are south-west quadrants, i.e. they con-
tain the point (—oo, —00).

Theorem 3 Let B be a set of n quadrants with the
same orientation in R?, and c be any parameter 1 <
c < n. Then there exists a (1/c)-net N for B of size
[c —1]. Such a net can be found in time O(nlogc).

Let us add one more side to the quadrants: a skyline
is a set of boxes that all intersect a common line. We
are only interested in what happens on one side of
that line, so we can consider unbounded boxes of the
form [z1,x2] X (—o00,y]. We can extend the previous
result to a skyline.

Theorem 4 Let B be a set of n axis-aligned bozes,
all unbounded in some common direction, and c be
any parameter 1 < ¢ < mn. Then there exists a (1/c)-
net N for B of size at most [2¢ — 1]. Such a net can
be found in time O(nlogc).

Using this result, we can now solve the general prob-
lem for boxes. Unfortunately, we cannot solve the
conjecture, but we can prove:
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Theorem 5 Let B be a set of n axis-aligned boxes in
R? and ¢ be any parameter 1 < ¢ < n. Then there
exists a (1/c)-net N for B of size O(cloglogc). Such

a net can be found in time O(nlogc).

4 k-oriented objects

A natural generalization of boxes in R? is that of a k-
oriented convex polygon [6], which is simply a convex
polygon whose sides are constrained to be parallel to
a set of k fixed directions (k = 2 for boxes). Our
proof extends there as well. In fact, we suspect that
any result for boxes would extend to k-oriented poly-
gons where the constants in the O() notations become
functions of k. But we have no proof of such a general
statement.

5 Orthants in higher dimension

As shown in the previous section, the key problem is
that for the generalized orthants, which we call or-
thants for short. We are now interested in this prob-
lem for any dimension. We first prove that finding
nets for orthants does indeed help for boxes.

Theorem 6 Assume that there exists e-nets of size
s(e) for any set of orthants in R, and that s() is non-
decreasing and has polynomial growth (which implies
s(O(z)) = O(s(x))). Let B be a set of n boves in RE
and c be any parameter 1 < ¢ < n. Then there exists
a (1/c)-net N for B of size Oq4(s(1/c)). Such a net
can be found in time O(nlogc).

Now we show how small nets we can find efficiently
for orthants. The bound is far from optimal for di-
mensions greater than 2, as nets of size Oy(clogc)
exist but take much longer to compute (see the intro-
duction).

Theorem 7 Let B be a set of n orthants with the
same orientation in R and ¢ be any parameter 1 <
¢ < n. Then there exists a (1/c)-net N for B of size
O4(c?=1). Such a net can be found in time O(nlogc).

For points and halfspaces in R?, Matousek, Seidel,
and Welzl [4] have shown that there exist e-nets of
size O(1/¢). They also show that it suffices to restrict
to points in convex position, albeit by having nets
bigger by a factor of d. We prove an analog result for
orthants, without the blowup factor. The analogue
of convex position for orthants is maximal position,
as defined in [8].

Lemma 8 Suppose there exists a e-net of size s(e)
for any set of orthants in R% in maximal position.
Then there exists an e-net for any set of orthants in
R? of size s(¢).

6 Conclusion

This shows another set system where the general
bound O(clogc) for a (1/c)-net could be improved
to O(c), and more efficient algorithms can be found.
Komlos, Pach and Woeginger [2] have shown that
there exist set systems for which (1/¢)-nets must have
size Q(clogc).

This also poses the analog problem of finding good
approximations, in the sense that not only does p hit
few boxes if it misses N, but the number of hits in N/
reflects the number of hits in B (scaled by |N/|B]).
The approach above seems to collapse because noth-
ing guarantees the representativity of N.
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The Metric TSP and the Sum of its Marginal Values

Moshe Dror*
Yusin Leef
James B. Orlin ¥

August 31, 2004

Abstract

This paper examines the relation between the length of an optimal Traveling Salesman tour
and the sum of its nodes’ marginal values (a node’s marginal value is the difference between the
length of an optimal TSP tour over a given node set and the length of an optimal TSP tour over
the node set minus the node). To our knowledge, this problem has not been studied previously. We
find that in metric spaces L1, Ly/3, L2, L4, Lo, the event in which the sum of TSP marginal values
is greater than the length of the optimal tour is very rare. We present a number of cases for which
the sum of marginal values is never greater that the optimal tour. We establish a worst case ratio
of 2 for any metric TSP. In addition, for 6 node TSPs we determine the worst ratio for L1, L
norms, triangular inequality, and symmetric distance, of 10/9, 10/9, 1.2, and 1.5 respectively, by
solving the appropriate mixed integer programming problems.
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Extended Abstract

1 Introduction

We study triangulations of planar sets of points. The problem of interest is to optimize the area of the
individual triangles in the triangulation, or to find the MinMax and MaxMin area triangulations of the given
point set. These two problems admit polynomial time algorithms in the case when the point set is a convex
polygon. In the general case, the problems are of unknown complexity. The problem of finding the MinMax
area triangulation is mentioned as a hard open problem in Edelsbrunner’s book [2]. In this paper we discuss
an approach for approximating these two optimal area triangulations with a triangulation that has angular
restrictions imposed. This results in a subcubic algorithm for finding the approximating triangulation. The
approximation ratio depends on angular parameters, analytical results on this are shown.

2 Angular restrictions and forbidden zones

Suppose the optimal area triangulation (either MaxMin or MinMax area) contains small angles, which is
known to be unsuitable for practical purposes. Denote the smallest angle in the optimal triangulation (which
we don’t know) as 3. We call triangulation that has all of its angles larger than 3 a 3 -triangulation. We want
to construct an a-triangulation, which is ”fatter” (a > (), that approximates the optimal with a practical
coefficient. Given the fact that all of the angles of the a-triangulation are going to be larger than «, we can
define a region surrounding each edge of the triangulation, called forbidden zone. The forbidden zone of an
edge is by definition a region that is empty of points of the original point set if the edge is in the triangulation.
In these circumstances, the forbidden zone is a polygonal region, recursively defined by adding to the edge
isosceles triangles with a base the edge itself, and base angles of «, and continuing this process outwards of
the already tiled area infinitely. First four steps are shown in Figure 1. The parameters of the forbidden
zone are fully determined by the length of the edge a and the angle a. The forbidden zone entirely contains a
trapezoid with the given edge as a base, base angles of 3« and heighth of (a/2) tan «. The zone also entirely
contains a circle surrounding each of the endpoints of the edge. Please refer to Figure 2 for an illustration.

Figure 1: Recursive construction of the forbidden zone
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Figure 2: The border of the forbidden zone up to third order

3 Perfect matchings and bounds

To obtain the bounds for approximation factors, we use the perfect matching between the 3 -triangulation
and the a-triangulation, as described in Aichholzer’s paper [1]. We study all the possible cases of matched
triangles and positions of the points with respect to the forbidden zones. Based on this we derive the following
bounds of the approximation factors for the MaxMin area triangulation:

< 1 1 2(1+ k)(1 + 2k) I<:2)
f1 =max

tan atan? B tan g "sinatan? 8’ tan a " sin a

and for the MinMax area triangulation:

1 1 1 1
f2 = maz (tanﬁtan2 atan g’ sinftan® o’ 2(1 — k)(1 — 2k)sin ftan § " kF Sin25)
where k, k1 and n are the following parameters of the forbidden zone:

tan o b — 1 _— {180O 1—‘

1= 2ncos™ o

~ 2sin3a 20 2

The approximation factor f; shows how many times the smallest area triangle in the approximating « -
triangulation is smaller than the smallest area triangle in the optimal (MaxMin area) triangulation. Similarly,
fo gives the ratio of the largest area triangle in the approximating triangulation, compared to the largest
area triangle in the optimal (MinMax area) triangulation.

4 Algorithmic results and sample values

Based on the fact that we can compute the optimal 30°-triangulation (if it exists) by modified Klincsek’s
algorithm, or we can relax Delaunay by area equalizing flips, we achieve a subcubic algorithm that approx-
imates the optimal area triangulations, by the above given factors. The value of a can be chosen from
practical considerations. Here are some sample results, summarized in a table:

o 30 30 25 25 20 20 15
8 25 20 20 15 15 10 10
fi ] 35.930 | 74.149 | 91.807 | 226.87 | 290.66 | 1010.1 | 1372.0
fo | 24.010 | 30.716 | 56.994 | 77.418 | 311.28 | 455.06 | 7900.1

Table 1: Sample values for f; and fs
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Detecting Duplicates Among Similar

Bit Vectors
(of course, with geometric applications)

Boris Aronov! and John lacono?

Abstract We show how to detect duplicates in a
sequence of k n-bit vectors presented as a list of
single-bit changes between consecutive vectors, in
O((n + k)logn) time.

Problem We are given a sequence S = {vy,..., v}
of k n-bit vectors, presented as follows: The first bit
vector is all zeros and each subsequent vector v; is
obtained from the previous vector v;_; by flipping a
single bit in position b;, 0 < b; < n. S is represented
as bo, b3, ..., b;. The problem is to detect duplicates
in the sequence vy, v, ...,v;x. More formally, we seek
a labeling S — {1,...,k}, v; = ¢;, such that ¢; = ¢;
iff V; = Vj.

Solution  Without loss of generality in the remainder
of this note we assume that n is a power of two. Let T
be the perfectly balanced binary tree on n leaves. We
number the leaves of T" from 0 to n — 1 and associate
each with a bit position. Each interior node x of T is
similarly associated with a block B(x) of consecutive
bit positions corresponding to the leaves of the sub-
tree rooted at x. For a bit vector v;, let v;(z) be its
substring in B(z). The idea behind our data struc-
ture is simple: each node x has an associated data
structure that stores implicitly the set Uf:l{vl(x)}
The data structure stored at node z consists of two
arrays D, and F, that store the following data:

e D.[1,...,d,] contains the sorted set including 1
and all distinct values ¢, 1 < ¢ < k, such that

vi—1(x) # vi(x).

e F.[l1,...,d;] contains integers in the range
1,...,d, with the property that F,.[i]] = F.[j]
iff vp, [ (x) = vp,[;)(@)-

1Research supported in part by NSF ITR Grant CCR-00-
81964 and by a grant from US-Israel Binational Science Foun-
dation; part of work has been carried out while visiting Max-
Planck-Institut fiir Informatik. Department of Computer and
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We now complete the description of our algorithm,
by explaining how to initialize D, and F, for all
leaves z € T and how to compute D, and F, from
D;, F,., Dy, F, for any internal node x with children [
and r. Fioot describes the desired labeling of .S, since
D,oot contains all the numbers 1,..., k.

If one stores all of the leaves z in an array in numeri-
cal order, a linear scan of the sequence bs, b3, . .., by of
bit updates allows one to initialize arrays D, and F,,
for all z. Specifically, we store the current bit vector
v;—1 explicitly in a bit array V[0,...,n — 1]. Since
b; = j indicates a bit flip in position z = j (recall
that bit positions, and thus leaves are identified with
integers 0,...,n — 1), we flip the value of V[j], add j
to D, and depending on the resulting value of V'[j],
set the next entry in F, to zero or one.

Algorithm 1 The pseudocode for computing D, F,
from Dy, F}, D, F.
Li—j— k1
: Dl[dl + 1] — DR[dr + 1] «— 00
repeat
P,[k] < (Fo(3), Fi(j), k,0)
if D;[i] < D,[j] then
D, k] — Difi]; i — i+ 1
else if D,[i| = D,[j] then
Dolk] — Difili i — i+ 1 j — j+1;
else if D;[i] > D, [j] then
10: D[kl — Dylj];j — i+ 1;
11: end if
12: k—k+1;
13: untili =d;+1and j=d, +1
14: dp — k—1 > d, is the length of P, and D,
15: Sort P, lexicographically on the first two fields,
by radix sort
16: for k +— 2 to d, do
17: if P,[k — 1][1] = P,[k][1] and P,k — 1][2] =

[\

© PSR W

P.[k][2] then
18: P,[k][4] < Pk — 1][4]
19: else
20: P.k][4] <« P.[k —1][4] +1
21: end if
22: end for

23: for k «+— 1 to d; do
24 Fy[P[K][3]] — Pu[k][4]
25: end for

g

Now, we describe, for an internal node x of T with
children [ and r, how to construct D,, F,, from arrays
D, D,, F}, F,; see Algorithm 1. The new sorted array
D.[1,...,d;] is built by merging the arrays D; and
D,., eliminating any duplicates, in time O(d; + d,.) =
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O(d,). Simultaneously, we create an auxiliary array
P.[0,...,d;] that records how the merge step has
proceeded; it consists of quadruples of items. Refer
to lines 1-13. We clearly have

Lemma 1. The array D, as constructed is correct.
The first two columns of the array P, contain pairs of
integers in the range 1, ..., d, with the property that
(P, 1], Poli)[2]) = (P, G111, Polj112) fF vp, () =
vp,5](x). The third column just numbers the rows of
P, consecutively.

The array P, contains all the information we need,
in a sense, but not in the right order. At this point we
radix-sort P, according to the first two fields, in two
passes. As P, is of size d, and each of these fields is
a positive integer no larger than d,, this takes O(d)
time. In lines 16-22, we number the rearranged lines
of P, consecutively, ignoring duplicate pairs in the
first two columns. These integers will be used to fill
in F, and are guaranteed to be in the range 1,...,d,.
This takes time O(d,). We finally fill the array F,
using the data in P,, as detailed in lines 23-25. A
few minutes of contemplation will convince the reader
that the following lemma holds.

Lemma 2. The array F, contains integers in the
range 1,...,d with the property that F.[i] = F.[j] iff
vp, (i)(%) = vp,[j(z)-

Application  Suppose one is interested in computing
an arrangement of n simple shapes (such as disks,
triangles, or halfplanes) in R2. There are plenty of al-
gorithms, including deterministic ones, that can solve
this problem in O(n? log n) time for a variety of shapes.
But what if, in addition to the face structure of the
arrangement, one is interested in labeling the faces
with the bit vector indicating which of the objects
each face belongs to? Clearly, an explicitly stored
labeling is too expensive, requiring ©(n?) bits in the

worst case. However, traversing the arrangement by
an Eulerian path of the face incidence graph allows
one to encode the bit vectors using single-bit flips
between consecutive vectors along the path. In par-
ticular using the algorithm described above, we can
detect which faces correspond to identical vectors and
thus are contained in identical sets of shapes. The
process takes O(n?logn) time. An entirely analogous
process can process an arrangement of n objects in
any dimension, traversing k cells in O((n + k) logn)
time, provided adjacent cells differ only in a single con-
tainment and an adjacency structure encoding local
bit differences is available.

Note that the assumption that the first bit vector
in the sequence is all zeros can be dropped without
changing our algorithm. Also observe that our algo-
rithm can be used with slight modifications to de-
tect duplicates among bit vectors coming from several
sequences—one just needs to artificially concatenate
the sequences together by using dummy intermediate
vectors, if the number of sequences is small. This will
result in an additional O(nlogn) cost per concate-
nation. A less brute-force approach to dealing with
multiple sequences which results in a O(n) concatena-
tion cost will be described in the full version of this
paper.

A geometric application with two sequences of bit
vectors was presented in [1].
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Approximation Algorithms for Two Optimal Location Problems in
Sensor Networks

Alon Efrat Sariel Har-Peled Joseph S. B. Mitchell

Abstract

This paper studies two problems that arise in optimization of sensor networks: First, we
devise provable approximation schemes for locating a base station and constructing a network
among a set of sensors each of which has a data stream to get to the base station. Subject to
power constraints at the sensors, our goal is to locate the base station and establish a network
in order to maximize the lifespan of the network.

Second, we study optimal sensor placement problems for quality coverage of given domains
cluttered with obstacles. Using line-of-site sensors, the goal is to minimize the number of sensors
required in order to have each point “well covered” according to precise criteria (e.g., that each
point is seen by two sensors that form at least angle «, or that each point is seen by three sensors
that form a triangle containing the point).

1 Introduction

Consider a wireless sensor network with a large number of deployed sensors, each capturing data
on a continuous basis. The sensors may be capturing video data, audio data, environmental data,
etc. There is a base station that collects all of the data streams from all of the sensors. Each sensor
passes data packets along some route in a network, from sensor to sensor, so that all data arrives
at the base station. Since each sensor is generally powered by some form of battery, the duration
of the sensor node is determined in large part by its power dissipation rate and energy provision.
A fundamental issue associated with wireless sensor networks is maximizing their useful lifetime,
given their power constraints. This can be significantly affected by the location of the base station
as well as the forwarding protocols used (i.e. which sensor forwards packages of which other sensor)
in establishing the network. Hou! has suggested the use of the length of time until the first sensor
exhausts its battery as a definition of the lifespan of the system. In the paper, we show how to
find a location of the base station such that the lifespan of the system is optimized to within any
desired approximation bound. Specifically, we give a method for locating the base station that
provably obtains a lifespan of at least (1 — ) times that of the optimal lifespan, where ¢ > 0 is
any pre-determined fixed value. The algorithm is based on solving O(ne~*log?(n/¢)) instances of
a linear programming problem. It is simple and easy to implement.

Theorem 1.1 Given a set of sensors S = {s1,...,sn} and a parameter € > 0, one can compute
a location of the base station and a transmission scheme such that the network lifespan is at least
(1 — €)topt, where top is the lifespan of an optimal transmission scheme for S. This algorithms
requires M = O(ne~*log?(n/e)) preprocessing time, and needs to solve M instances of linear
Programming.

!Thomas Hou, personal communication, 2003.
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We also study another optimal location problem in sensor networks: How does one choose
locations of sensors for line-of-sight coverage of a given region, under the assumption that a point is
only “covered” if it is “well seen”? We consider two definitions of “well seen”: A point p is well seen
(or robustly covered) if either (a) there are two sensors that see p, and these sensors are separated
by angle at least o with respect to p; or (b) there are three sensors that see p and they form a
triangle that contains p. The objective is to minimize the number of sensors to achieve robust
coverage. Our results on this problem give efficient approximation algorithms for minimizing the
number of sensors.

Theorem 1.2 Given P and QQ as above, an angle o, and a grid I' of edge-length § inside P, we
can find a set G of sensors in P such that G 2-guards Q at angle /2, and |G| = O(kopt log kopt),
where kopt s the cardinality of smallest set of vertices of I' that 2-guard @) at angle . The running
time of the algorithm is O(nkﬁpt log® nlogm), where m is the number of vertices of I' N P.

Theorem 1.3 Deciding if k sensors within P suffice to triangle-guard Q) is NP-hard.

Theorem 1.4 Given P and Q) as above, and a grid I' of edge-length §, we can find a set G of sensors
in P, that triangle-guard Q, with |G| = O(kopt 10g kopt), where kopt is the cardinality of smallest set
of vertices of I' that triangle-guard Q. The running time of the algorithm is O(nkgpt log? nlog m),
where m is the number of vertices of I' N P.

This second problem is a variant of the classical art gallery problem, in which one is to place the
fewest sensors (“guards”) to see all points of a certain geometric domain. Art gallery problems have
been studied extensively; see, e.g., [Kei00, Urr00] for recent surveys. The algorithmic problem of
computing a minimum number of guards is known to be NP-hard, even if the input domain, D, is a
simple polygon. Thus, efforts have concentrated on approximation algorithms for optimal guarding
problems. Recently, researchers [EH02, GLO1] have applied set cover methods that exploit finiteness
of VC-dimension. In particular, Efrat and Har-Peled [EH02] obtain an O(log k*)-approximation
algorithm for guarding a polygon with vertex guards, using time O(n(k*)?log® n), where k* is the
optimal number of vertex guards. Cheong et al. [CEH04] have recently shown how to compute
k guards in order to optimize (approximately) the total area seen by the guards. The triangle-
guarding coverage problem we study is related to recent work of Smith and Evans [SE03].
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Farthest Point from Line Segment (QQueries”

Ovidiu Daescu’ and Robert Serfling *

We discuss farthest point from line segment queries in R® and related problems. The
solution for answering farthest point from line segment queries relies on a solution for the
Farthest Point From Line Problem (FPFL): Preprocess a set P of n points in R%, d > 3,
such that for a query line L one can efficiently report the farthest point of P from L. We use
O*(+) to hide O(log®") n) factors.

Theorem 1 A set P of n points in R?, d > 3 a constant, can be preprocessed with Ofs -
logo(l) n) space and time such that for a query line L the farthest point of P from L can be
found in O(nlog n/sl/[f(d)/QJ) time, where n < s < nf(@/2,

Lemma 1 Let P be a set of n points in R® and let (q,L,, A) be a triplet with ¢ a point and
Ly a line through q such that all points in P are within distance A from L,. Let h, denote the
plane orthogonal to L, at q. If there is a p € P such that |qp| > A, then the point of P farthest
from q in the halfspace defined by h, and containing p is a vertex of the convex hull of P.

Proof. Let P = {p1,pz2,...,pn}. Let CH(P) be the convex hull of P, let C' = CH(P)()hy,
and consider the part CH (P, q) of CH(P) in one of the two halfspaces defined by h,. For each
tetrahedron ¢p;prp;, with p;, pr,p; € CH(P,q), one of p;, p;, or p; is the farthest point to q.
For each tetrahedron of the form ¢p;p;a, with p;,p; € CH(P,q) and a being a vertex of the
boundary dC of C, let py be the farthest point to ¢ within that tetrahedron (see Fig. 1(a)). Let
p. be the intersection of the line gpy with the triangle p;p;a. Let ¢ = ap} [\ pip;. Observing
that |ga| < A and |ge| < maxz{|qp;|, |qp;]}, we have that the farthest point to ¢ satisfying
the condition in the lemma could only be one of p; or p;. For each tetrahedron of the form
qp;ab, with p; € CH (P, q) and a, b vertices of 9C', let py be the farthest point to ¢ within that
tetrahedron (see Fig. 1(b)). Let pj be the intersection of the line gp; with the triangle p;ab.
Let ¢ = p;p () ab. Clearly, ¢ is within distance A from ¢. Thus, by a similar argument as
above on triangle ¢p;c, the farthest point from ¢ could only be p;. |

Our solution for computing farthest points from line segments also uses simplicial partitions.
A simplicial partition W(P) = {(P1,t1), (P2, t2),...,(P.,t.)} for a set P of n points in R? is
a collection of pairs, where the F,’s are disjoint subsets of P whose union is P, and t; is
a tetrahedron containing P;, for ¢ = 1,2,...,r. For a given simplicial partition ¥(P), the
crossing number of a plane h is the number of tetrahedrons of W(P) that h intersects. The
crossing number of W(P) is the maximum crossing number over all possible planes. We say
that a simplicial partition W(P) is fine if |P;| < 2n/r, for every 1 <1 < r. Matousek [2] proved
the following result.

*This research was partially supported by NSF grant CCF-0430366.
"Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080.
{Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080.
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Figure 1: The point py farthest from ¢ is a vertex of CH (P, q) if |qpx| > A.

Theorem 2 [2] For any given set P of n d-dimensional points, d > 2, and a parameter r,
1 <r <mn/2, a fine simplicial partition of size r and crossing number O(rl_l/d) exists. If r is
a constant such a simplicial partition can be constructed in O(n) time with O(n) space.

A simplicial partition can be used to construct an efficient data structure, called a partition
tree: the root of the partition tree has r children, each associated with a simplex ¢; in a simplicial
partition W(P), as well as any secondary information related to the enclosed point set, and
being the root of a recursively defined partition tree on the point set that belongs to this node.

Theorem 3 Given a set P of n points in R3, in 0(n4/3) time one can construct a data structure
of size 0(n4/3) such that the farthest point of P from a query line segment s can be reported in
O(n2/3+5) time, for arbitrary ¢ > 0.

Proof. Let L, be the line supporting s. The farthest point from s is either (i) the farthest
point from L or (ii) the farthest point p € P from one of the endpoints of s, with the property
that the plane orthogonal to s at that endpoint has s and p on different sides. The point
for (i) can be obtained using FPFL. This gives us a value A such that all points in P are
within distance A from Ls. The point for (i) can then be found by performing two queries,
each on a data structure associated with C'H (P, ¢;), where ¢;, ¢ = 1,2, is an endpoint of s,
and C'H(P,q;) and ¢3_; are on different sides of the defining plane for CH (P, ¢;). Consider
the query for CH (P, ¢1). The problem is to report the farthest point p € P to ¢ such that
p € CH(P,q) and |pgi| > A, if such a point exists. From Lemma 1, it follows that one should
only consider the vertices of CH(P,q1). We first construct a partition tree based on a fine
simplicial partition W(P). Let P, be the subset of P stored at a node v of the tree, and let ¢,
be the tetrahedron of W(P) that contains P,. For each node v, we compute the convex hull
CH, of P,. We also compute and store a data structure for the subset of P, corresponding
to the vertices of C'H,, that can answer farthest neighbor queries in R3. In R?, d a constant,
with O*(m) time preprocessing and O(m) space one can answer farthest neighbor queries in
O(n/mM1/21) for any m such that n < m < nl4/2] (see [1], page 594). Thus, in R?, the query
time is O(n/m'/?). A careful analysis of this data structure shows it requires O*(n) time
preprocessing and O(nlogn) storage. The query time in this data structure is O(n?/3+¢), for
any constant € > 0. Balancing the space and preprocessing time for FPFL to obtain O(n2/3+5)
query time, we get O*(n4/3_45) preprocessing time and space. |
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Computational Geometric Aspects of Musical Rhythm
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For our purpose a rhythm is represented as a
cyclic binary string. Consider the following three
12/8 time ternary rhythms expressed in box-like nota-

tion: [x.x.x.x.x.x.], [x.X.XX.X.X. X
and [x...xx..xxx.. Here “x” denotes the
striking of a percussion instrument, and “.” denotes

a silence. It is intuitively clear that the first rhythm
is the most even (well spaced) of the three. Tradi-
tional rhythms have a tendency to exhibit such prop-
erties of evenness. Therefore mathematical measures
of evenness find application in the new field of math-
ematical ethnomusicology [2], [17], where they may
help to identify, if not explain, cultural preferences of
rhythms in traditional music.

Clough and Duthett [3] introduced the notion of
mazximally even sets with respect to pitch scales rep-
resented on a circle. Block and Douthett [1] went fur-
ther by constructing several mathematical measures
of the amount of evenness contained in a scale. One of
their measures simply adds all the interval arc-lengths
(geodesics along the circle) determined by all pairs of
pitches in the scale. However, this measure is too
coarse to be useful for comparing rhythm timelines
such as those studied in [13] and [15]. Using inter-
val chord-lengths (as opposed to geodesic distances),
proposed by Block and Douthet [1], yields a more dis-
criminating measure, and is therefore a function that
receives more attention. In fact, this problem had
been investigated by Fejes Téth [12] some forty years
earlier without the restriction of placing the points on
the circular lattice. He showed that the sum of the
pairwise distances determined by n points on a circle
is maximized when the points are the vertices of a
regular n-gon.

One may also examine the spectrum of the fre-
quencies with which all the durations are present
in a rhythm. In music theory this spectrum
is called the interval vector (or full-interval vec-
tor) [7]. For example, the interval vector for the clave
Son pattern [x . . x. . x. . .| is given by
[0,1,2,2,0,3,2,0].
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Examination of such rhythm histograms leads to
questions of interest in a variety of fields of en-
quiry: musicology, geometry, combinatorics, and
number theory. For example, David Locke [9]
has given musicological explanations for the char-
acterization of the Gahu bell pattern, given by
X..xX..x...x...x., as “rhythmically po-
tent”, exhibiting a “tricky” quality, creating a “spi-
ralling effect”, causing “ambiguity of phrasing” lead-
ing to “aural illusions.” Comparing the full-interval
histogram of the Gahu pattern with the histograms of
other popular 4/4 time traditional clave-bell rhythms
leads to the observation that the Gahu is the only
pattern that has a histogram with a maximum height
of 2, and consisting of a single connected component
of occupied histogram cells.

In 1989 Paul Erdds [5] asked whether one could
find n points in the plane (no three on a line and no
four on a circle) so that for every ¢, i = 1,..n — 1
there is a distance determined by these points that
occurs exactly 7 times. Solutions have been found for
2 < n < 8. A musical scale whose pitch intervals
are determined by points drawn on a circle, and that
has the property asked for by Erdés is known in mu-
sic theory as a deep scale [7]. We will transfer this
terminoly from the pitch domain to the time domain
and refer to cyclic rhythms with the Erdés property
as deep rhythms.

The analysis of cyclic rhythms suggests yet another
variant of the question asked by Erdés. From the
musicological point of view it is desirable (especially
in African timelines) not to allow empty semicircles.
Such constraints suggest the following problem. Is it
possible to have k points on a circular lattice of n
points so that for every i, i = ks, kst1,...,kf (s and
f are pre-specified) there is a geodesic distance that
occurs exactly ¢ times, with the further restriction
that there is no empty semicircle?

These problems are closely related to the general
problem of reconstructing sets from interpoint dis-
tances: given a distance multiset, construct all point
sets that realize the distance multiset. This problem
has a long history in crystallography [8], and more
recently in DNA sequencing [11]. Two noncongruent



sets of points are called homometric if the multisets
of their pairwise distances are the same [10].

The preceeding suggests that it would be desirable
to be able to eficiently generate rhythms that contain
prescribed histogram shapes, (such as deep rhythms)
and to find approximations when such rhythms do not
exist.

The problem of comparing two binary strings of the
same length with the same number of one’s suggests
an extremely simple edit operation called a swap. A
swap is an interchange of a one and a zero that are
adjacent to each other in the binary string. The swap
distance between two rhythms is the minimum num-
ber of swaps required to convert one rhythm to the
other.

Consider two n-bit (cyclic) binary strings, A and B,
represented on a circle (necklace instances). Let each
sequence have the same number k of 1’s. We are in-
terested in computing the necklace-swap-distance be-
tween A and B, i.e., the minimum number of swaps
needed to convert A to B, minimized over all rota-
tions of A. This distance may be computed in O(n?)
time by solving a linear time problem in each of the n
rotated positions. The open problem is whether the
O(n?) may be improved. In contrast, the necklace-
Hamming-distance may be computed in O(nlogn)
time using the Fast Fourier Transform [6].

For additional discussion of the preceeding topics
the reader is referred to [13], [15], [14], [17], [16], [4],
and the references therein.

References

[1] Steven Block and Jack Douthett. Vector prod-
ucts and intervallic weighting. Journal of Music
Theory, 38:21-41, 1994.

[2] M. Chemillier. Ethnomusicology, ethnomathe-
matics. The logic underlying orally transmitted
artistic practices. In G. Assayag, H. G. Fe-
ichtinger, and J. F. Rodrigues, editors, Math-
ematics and Music, pages 161-183. Springer,
2002.

[3] J. Clough and J. Douthett. Maximally even sets.
Journal of Music Theory, 35:93-173, 1991.

[4] Miguel Diaz-Banez, Giovanna Farigu, Francisco
Gémez, David Rappaport, and Godfried T. Tou-
ssaint. El compdés flamenco: a phylogenetic anal-
ysis. In Proc. BRIDGES: Mathematical Connec-
tions in Art, Music and Science, Southwestern
College, Kansas, July 30 - August 1 2004.

[5] Paul Erdds. Distances with specified multiplici-
ties. American Math. Monthly, 96:447, 1989.

48

[6] D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press,
Cambridge, 1997.

[7] Timothy A. Johnson. Foundations of Diatonic
Theory: A Mathematically Based Approach to
Music Fundamentals. Key College Publishing,
Emeryville, California, 2003.

[8] Paul Lemke, Steven S. Skiena, and Warren D.
Smith. Reconstructing sets from interpoint dis-
tances. Tech. Rept. DIMACS-2002-37, 2002.

[9] David Locke. Drum Gahu: An Introduction to
African Rhythm. White Cliffs Media, Gilsum,
New Hampshire, 1998.

[10] Joseph Rosenblatt and Paul Seymour. The struc-
ture of homometric sets. SIAM Journal of Alge-

braic and Discrete Methods, 3:343-350, 1982.

[11] S. S. Skiena and G. Sundaram. A partial digest
approach to restriction site mapping. Bulletin of

Mathematical Biology, 56:275-294, 1994.

[12] L. Fejes Téth. On the sum of distances deter-
mined by a pointset. Acta. Math. Acad. Sci.

Hungar., 7:397-401, 1956.

[13] Godfried T. Toussaint. A mathematical analysis
of African, Brazilian, and Cuban clave rhythms.
In Proc. of BRIDGES: Mathematical Connec-
tions in Art, Music and Science, pages 157-168,

Towson University, MD, July 27-29 2002.

[14] Godfried T. Toussaint. Algorithmic, geometric,
and combinatorial problems in computational
music theory. In Proceedings of X Encuentros de
Geometria Computacional, pages 101-107, Uni-

versity of Sevilla, Sevilla, Spain, June 16-17 2003.

[15] Godfried T. Toussaint. Classification and phylo-
genetic analysis of African ternary rhythm time-
lines. In Proceedings of BRIDGES: Mathematical
Connections in Art, Music and Science, pages

25—36, Granada, Spain, July 23-27 2003.

[16] Godfried T. Toussaint. A comparison of rhyth-
mic similarity measures. In Proc. 5th Inter-
national Conference on Music Information Re-
trieval, pages 242-245, Barcelona, Spain, Octo-

ber 10-14 2004. Universitat Pompeu Fabra.

[17] Godfried T. Toussaint. A mathematical measure
of preference in African rhythm. In Abstracts of
Papers Presented to the American Mathematical
Society, volume 25, page 248, Phoenix, January

7-10 2004. American Mathematical Society.



Provably Better Moving Least Squares

Ravikrishna Kolluri

James F. O'Brien

Jonathan R. Shewchuk

University of California, Berkeley

1 Introduction

We analyze a variant of the implicit moving least squares
(MLS) algorithm proposed by Shen, O'Brien, and
Shewchuk [4]. We show that under certain sampling
conditions the surface reconstructed by the MLS agorithm
is geometrically and topologically correct.

The input to the MLS algorithm is a set of sample points
S near a surface F', with approximate normals. For each
sample s € S we define a linear point function that
approximates the signed distance function of ' in the local
neighborhood of s. These functions are blended together
using Gaussian weight functions yielding a smooth function
1 whose zero set U is the reconstructed surface. We prove
that I isagood approximation to the signed distancefunction
of the sampled surface F', and that U is homeomorphic to F'
and geometrically closeto F.

Shen, O'Brien, and Shewchuk originally proposed their
MLS construction with different weight functions for build-
ing manifold surfaces from polygon soup. Kolluri [3]
showed that for reconstructing surfaces from points sets, a
variant of this algorithm is geometrically and topologically
correct under uniform sampling conditions. In this work we
extend the analysis to handle adaptively sampled point data
in which the sampling density is proportional to the local
surface complexity. Our sampling requirements defined
in Section 2, are similar to the sampling requirements of
Delaunay-based algorithms like Crust [1].

2 Sampling Requirements

The local feature size (Ifs) at apoint p € F is the distance
from p to the nearest point of the medial axis of F, as shown
in Figure 1. S isan e-sample of the surface F' if the distance
from any point p € F to its closest samplein S isless than
e lfs(p). Our results are valid for values of ¢ < 0.01.

Amenta and Bern [1] show that the function 1fs is 1-
Lipschitz.  We extend the definition of the function Ifs
beyond the points on the surface F. This extension is
used in defining our sampling requirements and our MLS
construction. We define the extended local feature size of a
point p as

elfs(z) =

peilrml{lfs(p) +d(x,p) — |p(x)[}.

Here, ¢(x) isthe signed distance from z to the surface F' and
d(x, p) isthe distance between point = and point p. It is easy
to show that the function elfs is 1-Lipschitz and reduces to
the function Ifs for points on the surface.

Observation 1 For any two points, p and ¢, |elfs(p) —
elfs(q)| < d(p, q). For any point p € F, elfs(p) = lfs(p).
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Figure 1. A closed curve along with its medial axis. The
local feature size of p isthe distance to the closest point = on
the medial axis.

Our sampling requirements alow for noisy data when the
amount of noise in the sample coordinatesis small compared
to the sample spacing. We assume that for each sample
s, the distance to its closest surface point p € F'is less
than e2elfs(s). We aso allow a small amount of noise in
the estimated sample normal. Consider a sample » with
estimated normal 7i,., as shown in Figure 1, whose closest
point in F' is ¢ with true normal 7i,. The angle between 7,
and 7, should be less than e.

Our MLS construction builds the function I by blending
together functions associated with each sample point. Hence
arbitrary oversampling in one region of the surface can
distort the value of the function in other regions. To prohibit
such oversampling, we require that local changes in the
sampling density be bounded. Let o be the number of
samples inside a ball of radius ¢ elfs(p) centered at a point
p. If a > 0, the number of samples inside a bal of radius
2¢eelfs(p) at p isat most 8av.

3 Surface Definition

The input to the MLS algorithm is a set of sample points
S near the surface F'. Each sample s € S has an associated
vector i, that approximatesthe outside normal of the surface
near s.

We build a point function for each sample s € S that
approximates the signed distance function of F' near s. The
point function Ps(z) of sample point s with normal 77, isthe
signed distance from «x to the tangent plane at s, Ps(x)
(z —s) - 7is. A weighted average of the point functions gives
the function I whose zero set isthe implicit surface we seek.

_ ZSES WS(‘L)((I' - S) ﬁs)
ZSES Wg(l‘) .

The weight functions are Gaussian functions modified by a

I(z)



Figure 2: () The function I at point z is mostly determined
by the point functions of the samples inside the thin shell
bounded by By and B,. (b) The offset curves F},, and F
of acurve .

normalization factor associated with each sample point.
WS({L‘) = e*”fﬂ*si\lz/clfsQ(z)/AS.

The normalization factor associated with each sample point s
accounts for oversampling near s. Let @ > 0 be the number
of samples inside a ball B, of radius eelfs(s) centered at
sample s, including s itself. The value of A isgiven by

B a
C Selfs®(s)

4 Reaults

Consider a point = whose closest point on the surface is
p as shown in Figure 2(a). Let Bi(x) be a ball of radius
|¢(x)| centered at =. Consider a second ball Bz (x), that is
dlightly bigger than B;(x), also centered a «. The radius
of By(z) is|¢(x)| + Telfs(x). Here T = 2¢ is a constant
that depends on the sampling density. Our results are based
on the observation that the value of the function at point =
is mostly determined by the samples inside the thin shell
bounded by B;(x) and By(x).

Let F,.; be the m-offset surface outside of F' that is
obtained by moving each point p € F' along the normal
a p by adistance 7 - elfs(p). Similarly, let F;, be the 7-
offset surface inside of F' as shown in Figure 2(b). The -
neighborhood is the region bounded by the inside and the
outside offset surfaces. Our first geometric result is that the
zero set U of I isinside the 7-neighborhood of £

Theorem 2 For each point - outside Fyy¢, I(zz) > 0 and for
each point y inside Fiy,, I(y) < 0.

Theorem 2 proves that the function I does not have any
spurious zero crossingsfar away from the sample points. Our
second geometric result is about the gradient of I at points
inthe zero set of 1.

Theorem 3 Let = bea point in the 7-neighborhood of ' and
let p bethe point on F' closest to . Let 72 be the normal of p.
Then, 77 - VI(z) > 0.

Theorem 3 proves that the gradient can never be zero inside
the 7-neighborhood. From Theorem 2, the zero set of [ is
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Figure 3: MLS reconstruction of the Stanford Dragon model
from raw data.

inside the T-neighborhood of F'. Hence, from the implicit
function theorem [2], zero is a regular value of I and the
zero set U isacompact, two-dimensional manifold.

We use these geometric results to define a homeomor-
phism between F" and U. As F and U are compact, a one-
to-one, onto, and continuous function from U to F' definesa
homeomorphism.

Definition: LetT": R®> — F map each point ¢ € R® toits
closest point on F'.

Theorem 4 The restriction of I" to U defines a homeomor-
phismfromU to F.

5 Discussion

Our sampling requirement that ¢ < 0.01 is probably an
artifact of our proof technique. The MLS agorithm works
quite well on data obtained from laser range, for which ¢ is
much larger than 0.01 as shown in Figure 3.

Our definition of the MLS surface requires knowledge of
the elfs(z), function which is unknown. In our analysis,
elfs can be replaced by any 1-Lipschitz function f such that
f(x) < elfs(z) at al points z, and the input sample is an
ef-samplefor e < 0.01. We can relax our requirements and
assume that the elfs function is known only at the sample
points. A 1-Lipschitz function function f(x) can now be
defined as

f(z) = min{d(z, s) + elfs(s) — d(z, nn(z))},

where nn(x) isthe sample nearest « in S.
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Contour Tree Simplification With Local Geometric Measures
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Figure 1: Left, an isosurface of the UNC Head (109 x 256 x 256 MRI) shows mostly the skull: the contour tree is unmanageable (1,573,373
edges). Right, contour surfaces chosen using a simplifed contour tree. (Annotation and colour chosen to emphasize the structure of the data.)

Abstract

The contour tree, an abstraction of a scalar feld that encodes
the nesting relationships of isosurfaces, has several potential ap-
plications in scientift and medical visualization, but noise in
experimentally-acquired data results in unmanageably large trees.
We attach geometric properties of the contours to the branches of
the tree and apply simpliftation by persistence to reduce the size
of contour trees while preserving important features of the scalar
feld.

Keywords: Isosurfaces, contour trees, topological simpliftation

1 Introduction

The contour treeis a topological abstraction of a scalar feld used in
scientift and medical visualization [BPS97; vKvOB+97; PCM02;
CSvdP04]. It represents changes in isosurface connectivity. In this
paper, we simplify the contour tree using geometric properties of
contours, permitting online simpliftation of the contour tree.

Figure 1 shows a conventional isosurface and a flexible isosur-
face [CSO03] extracted from the same data set after contour tree sim-
pliftation. On the left, we see that the outermost surface (the skull)
occludes other surfaces, making it difftult to study structures in-
side the head, and the contour tree has too many edges to be useful.
On the right, we see the result of using the simplifed contour tree
as an interface tool to enable a user to explore, color, and annotate
the contours — the structures inside the head can be seen in relation
to each other.

2 Related Work

The contour tree, a special case the Reeb graph [Ree46], is the re-
sult of contracting each contour in a scalar feld to a single point;
it tracks how contours, connected components of isosurfaces of a
data set, appear, merge, split, and vanish as we vary the chosen iso-
value. Efftient algorithms for constructing the contour tree have
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been reported for various meshes and interpolants [vKvOB™*97;
CSAO03; PCMO02; CLLR02; TNTFO04]; the contour tree has applica-
tions ranging from fast isosurface extraction [vKvOB™97; CS03]
and volume rendering [TNTFO04] to mesh simpliftation, abstract
representation of scalar felds [BR63; BPS97] and contour manip-
ulation [CS03]. Unfortunately, noise in the input data can create
many new contours by creating local minima and maxima. For
noisy experimentally-acquired data such as the UNC head data set
shown in Figure 1, contour trees commonly have millions of edges
—too many to serve as a visual representation for the input data.

To simplify the contour tree, we would like to assign an importance
to each edge and collapse edges of lower importance. This is a sim-
ple case of the ideas of topological persistence [EHZ03; ELZ02;
BEHPO3] applied to trees. Two works have applied persistence to
the isovalues: [HSKKO1] simplify the Reeb graph using hierarchi-
cal quantization of the data values, which can introduce errors at
edges that span the quantization boundaries, and [TNTF04] sim-
plify the contour tree using data values. We allow any geometric
property to guide simpliftation (and are most efftient with decom-
posable properties, such as volume and surface area.)

3 Contour Tree Simplification

Given a contour tree and a scalar feld, we simplify the contour tree
with graph operators, then reflect the simplication back to the input
data or use the simplifid contour tree directly to extract individual
contours from the simplifed data set.

To compute geometric measures for individual contours, we re-
place the single isovalued sweep in [BPS97] with multiple separate
sweeps of individual contours corresponding to sweeping individ-
ual points through the tree. Doing this requires combining partial
sweep results whenever a saddle in the tree is swept past. In three
dimensions, we can compute surface area, volume or hypervolume:
isovalue integrated inside the contour.

To simplify the contour tree, we then choose a leaf edge that cor-
responds to contours for which the chosen geometric property is
small and prune the leaf from the tree. By removing only leaves,



we guarantee that the structure remains a tree and corresponds to a
subregion of the scalar feld in which isovalued contour sweeps can
still be performed without discontinuous jumps.

Leaf pruning can result in a redundant vertex in the tree, as in Fig-
ure 2. We remove such vertices with no loss of topological infor-
mation in the tree. Since there is no geometric cost to doing so, we
prefer these vertex simplications where available and also prefer
leaf prunes that maximize the number of future vertex simplifta-
tions.

Removing a leaf of the tree corresponds to fhttening a local ex-
tremum of the data set as shown in Figure 2. By minimizing the
geometric cost of our simpliftation, we are able to achieve simpli-
ftation of the tree by 4 orders of magnitude without causing signif#
cant errors in the underlying feld being represented, and preserving
details of the contours that remain.

Vertex 50 is reduced

Figure 2: Leaf Pruning Levels Extrema; Vertex Reduction Leaves
Scalar Field Unchanged

Leaf 80 is pruned

4 Results and Discussion

We have tested this form of simpliftation on a variety of data sets
using the flexible isosurface interface [CS03]. In Figure 1, we show
a typical result using hypervolume as the importance measure. Con-
tours for the skull were not selected because they occlude the inter-
nal organs.
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Figure 3: A Pregnant Rat MRI (240 x 256 x 256). Despite low qual-
ity data, simplifying the contour tree from 2,943,748 to 125 edges
allows identiftation of several anatomical features.

Similarly, Figure 3 shows the result of a similar exploration of a
240 x 256 x 256, low-quality MRI scan of a rat from the Whole
Frog Project at http://www-itg.1lbl.gov/ITG.hm.pg.
docs/Whole.Frog/Whole.Frog.html. Again, simplifta-
tion reduces the contour tree to a useful size. After using the
dot tool from the graphviz package (http://www.research.
att.com/sw/tools/graphviz/) to lay out the contour tree,
these images took less than 10 minutes to explore and annotate. The
result is purely a function of the topology of the isosurfaces of the
input data, and uses no special constants.
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5 Conclusions and Future Work

We have presented a novel algorithm for the simpliftation of con-
tour trees based on local geometric measures. The algorithm is on-
line, meaning that simpliftations can be done and undone at any
time. This addresses the scalability problems of the contour tree
in exploratory visualization of 3D scalar felds. The simpliftation
can also be reflected back onto the input data to produce an on-line
simplifed scalar feld. The algorithm is driven by local geometric
measures such as area and volume, which make the simpliftations
meaningful. Moreover, the simpliftations can be tailored to a par-
ticular application or data set.

Future directions of research include extension to vectors of geo-
metric measures, user-directed local simpliftation of the contour
tree, utilization of the contour tree as a query structure for geomet-
ric properties, application of similar methods to volume rendering
and to non-isovalue segmentation, extension to time-varying data
sets, parallelization and improvements to contour tree layout algo-
rithms.
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OrthoMap: Homeomorphism-guaranteeing normal-projection
map between surfaces
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Extended abstract

In certain graphics applications, there is a need to establish a bijection between two surfaces for
texture transfer (for instance in simplification) and for discrepancy measures. Furthermore, there
is a desire to express one surface as the normal offset of another for compression, multi-resolution,
detail preservation during editing. For this, given two surfaces A and B, one associates to each
point of A a normal displacement distance (scalar field) to the corresponding point on B. The
difficulty lies in the fact that in general, such mappings are difficult or impossible to establish and,
when possible, often not very satisfactory. A natural correspondence would be to map each point
p of A onto its closest point B.n(p) on B. The normal mapping N (A, B) from A onto B associates
with each point p on A its normal projection B.n(p) on B. In general N (A, B) is not a bijection
(two different points p and q¢ on A may have the same images B.n(p) = B.n(q)) neither well defined
(the closest point of a point p on A may not be uniquely defined). The set of points p for which
B.n(p) is not unique is the medial axis M(B) of B [3]. In this work, we develop a simple condition
on A and B and prove that it guarantees that both N(A, B) and N (B, A) are bijective.

B
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N

Figure 1: Two conformal curves A and B

This condition involves the Hausdorff distance between A and B and the regularity of A and
B. The Hausdorff distance H(A, B) between A and B may be defined in terms of r-thickening.
The r-thickening Gr(A) of A is the union of all open balls of radius r and center on A. Note that
Gr(A) is the Minkowski sum of A with an open ball of radius r and center at the origin. The
r-thickening operator was used as a tool for offsetting, rounding and filleting operations [5] and
for shape simplification [6]. The Hausdorff distance, H (A, B), between two sets A and B is the
smallest radius r such that A C Gr(B) and B C Gr(A). A surface A is r-regular if every point of
it may be approached from both sides by an open ball of radius r that is disjoint from A. More
precisely, the r-thinning Sr(M) of a set M is the difference between M and the union of open balls
with center out of M and the r-filleting F'r(A) of A is defined as Sr(Gr(A)). The surface A is said
to be r-regular if F'r(A) = A [2]. Note that Fr(A) contains all points that cannot be reached by a

*Université de Bourgogne, Institut de Mathématiques de Bourgogne, France
fDassault Systémes (Aix-en-Provence) and LMC/IMAG, Grenoble France
iCollege of Computing, IRIS, GVU, Georgia Tech., Atlanta, Georgia
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ball of radius r whose interior does not interfere with A. The values r for which A is r-regular are
related to the local feature size 1fs(A) [1], and defined as the minimum distance between A and its
medial axis M(A). The surface A is r-regular for all r < lfs(A).

Definition: A and B are said to be conformal (to each other) when A and B are both r-regular
forr=H(A,B)/(2-2).
The following theorem is the main result of this paper:

Theorem: If surfaces A and B are conformal, then the normal mapping N (A, B) is bijective.

Moreover, N (A, B) allows to define an explicit isotopy (i.e. a continuous deformation of A into
B) between A and B (see [4] for a precise definition). The proof of the theorem is cast in precise
mathematical formalism which allows to prove this theorem for manifolds in any dimension. We
also show that conformality is a tight condition by giving an example of two curves A and B that
are r-regular for any r < H(A, B)/(2—+/2), but not conformal, and hence N (A4, B) is not bijective
(see figure 2).

Figure 2: Two curves A and B showing that optimality is tight. Right part is a zoom of a
neigborhood of 0 : A.n(p) = A.n(q)

In summary, we have provided a sufficient and tight condition to ensure that the normal map-
ping between two smooth (n — 1)-dimensional manifolds in n-D is a bijection. The condition links
the minimum regularity of the manifolds to their Hausdorff distance.
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Parallel Guaranteed Quality Planar Delaunay

Mesh Generation by Concurrent Point Insertion

*

Extended Abstract

Andrey N. Chernikov and Nikos P. Chrisochoides
Computer Science Department
College of William and Mary
Williamsburg, VA 23185

Abstract We develop a theoretical framework for
constructing parallel guaranteed quality Delaunay planar
meshes using commercial off-the shelf software (COTS).
We call two points Delaunay-independent if they can be in-
serted concurrently without destroying the conformity and
Delaunay properties of the mesh. First, we present a suf-
ficient condition of Delaunay-independence. It is based on
the distance between points, can be verified very efficiently
and used in practice. Second, we show that a simple block
mesh decomposition can be utilized in order to guarantee a-
priori Delaunay-independence of points in certain regions.
Third, we derive an expression which relates three mesh
quality and size parameters that allow to conduct the pre-
processing step of our approach using a sequential Delau-
nay refinement algorithm. We conclude with our current
work in progress that includes extending the presented ap-
proach to generate nonuniform graded meshes.

Introduction

Nave, Chrisochoides, and Chew [7] presented a practical
provably-good parallel mesh refinement algorithm for polyhe-
dral domains. The approach in [7], due to absence of sequential
code reuse, as well as intensive unpredictable communication
and setbacks, is labor intensive. In this paper, we develop an
approach which allows to use COTS, requires only structured
bulk communication, and eliminates setbacks by ensuring that
the inserted points are Delaunay-independent.

Linardakis and Chrisochoides [6] described a Parallel Do-
main Decoupling Delaunay method for 2-dimensional domains,
which is capable of leveraging the serial meshing codes. How-
ever, it is based on the Medial Axis which is very expensive and
difficult to construct for 3-dimensional geometries. The ap-
proach developed in the present work is domain decomposition
independent, i.e. it does not require an explicit construction of
internal boundaries.

Blelloch, Hardwick, Miller, and Talmor [2] describe a divide-
and-conquer projection-based algorithm for constructing De-
launay triangulations of pre-defined point sets in parallel. Our
goal, though, is to refine an existing mesh by inserting triangle
circumcenters, i.e., the set of points in the final mesh is not
known in advance.

Kadow in [5] extended [2] for parallel mesh generation. The
principal difference between [7] and [5] is that in [5] the need

*This work was supported by NSF grants: CCR-0049086, ACI-
0085969, ETA-9972853, EIA-0203974, and ACI-0312980
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to construct an initial mesh sequentially is eliminated.

Edelsbrunner and Guoy [4] define the points z and y as in-
dependent if the closures of their prestars (or cavities [7]) are
disjoint. We start with proving a similar condition of point
independence [3]. Our formulation is less restrictive: it allows
the cavities to share a point. However, computing the cavities
and their intersections for all candidate points is very expen-
sive. That is why we do not use coloring methods that are
based on the cavity graphs and we prove a theorem, which al-
lows to use only the distance between the points for checking
their Delaunay-independence. The minimum separation dis-
tance argument in [4] is used to derive the upper bound on the
number of inserted vertices and prove termination, but not to
ensure point independence.

Spielman, Teng, and Ungor [9] presented the first theoreti-
cal analysis of the complexity of parallel Delaunay refinement
algorithms. However, the assumption is that the global mesh
is completely retriangulated each time a set of independent
points is inserted [11]. In [10] the authors developed a more
practical algorithm which takes O (logm) time (i.e. number of
parallel iterations) using m processors, where m is the size of
the output. In contrast, our approach [3] uses only four par-
allel refinement iterations with a fixed number of processors,
where each iteration on a single processor is performed by a
sequential mesher [8]. The present work is an extension of the
work we presented in [3].

The Theoretical Framework

Sequential Delaunay refinement algorithms are based on in-
serting circumcenters of triangles which violate the required
bounds, e.g. the upper bound p on circumradius-to-shortest
edge ratio, and the upper bound A on triangle area. Let the
cavity Cam(p) of point p with respect to mesh M be the set of
triangles in M, whose open circumdisks include p. We expect
our parallel Delaunay refinement algorithm to insert multiple
circumcenters concurrently in such a way that at every itera-
tion the mesh will be both conformal and Delaunay. Figure 1
illustrates how the concurrently inserted points can violate one
of these conditions.

Theorem 1 Let T be the upper bound on triangle circumradius
in the mesh and p;,p; € Q C R%. Then if ||p; — pj|| > 47, then
independent insertion of p; and p; will result in a mesh which
is both conformal and Delaunay.

To show that Theorem 1 is applicable throughout the
run of the algorithm, we prove that the execution of the



(b)

Figure 1: (a) If Apspepr € C(ps) N C(pg), then concurrent
insertion of ps and pg yields a non-conformal mesh. Solid lines
represent edges of the initial triangulation, and dashed lines —
edges created by the insertion of pg and pg. Note that the inter-
section of edges psps and pop7 creates a non-conformity. (b) If
edge psps is shared by C(ps) = {Ap1p2pr, Apapspr, Apspepr}
and C(p1o0) = {Apspsps, Apspaps }, the new triangle Apspiope
can have point ps inside its circumdisk, thus, violating the De-
launay property.

# of Pipe with holes Unit square
pro- Time, | # of elmnts, | Time, | # of elmnts,
Cessors sec. x10° sec. x10°
4 179.1 14.6 293.7 23.8
64 273.6 233.3 300.1 470.7
121 212.7 441.1 293.7 873.5

Table 1: Scaled workload, the area bound is inversely propor-
tional to the number of processors.

Bowyer/Watson kernel [7], either sequentially or in parallel,
does not violate the condition that 7 is the upper bound on
triangle circumradius in the entire mesh.

Theorem 2 The condition that 7 is the upper bound on trian-
gle circumradius in the entire mesh holds both before and after
the insertion of a point.

In order not to check the independence condition for every
pair of candidate points, we utilize a coarse-grained domain
decomposition scheme. A coarse uniform lattice is overlapped
over the triangulation domain in such a way that any pair of
points in non-adjacent cells are guaranteed to be no less that
47 apart. To enforce the 7 circumradius bound in the mesh we
derive the following relation which allows to use the standard
sequential Delaunay refinement algorithms for preprocessing:

Theorem 3 If p and A are upper bounds on triangle
circumradius-to-shortest edge ratio and area, respectively, then
7= 2(5)3/2\/Z is an upper bound on triangle circumradius.

Some results for shared and distributed memory implemen-
tations' are shown in Tables 1 and 2. Table 1 also indicates
that there is potential for improvement by using the Load Bal-
ancing Library [1].

1This work was performed using computational facilities at the
College of William and Mary which were enabled by grants from
Sun Microsystems, the National Science Foundation, and Virginia’s
Commonwealth Technology Research Fund.

7 of Time, sec. | Time, sec. | # of elmnts,
processors MPI OpenMP %108
4 220.3 214.1 14.6

Table 2: Pipe cross-section, distributed (MPI) and shared
(OpenMP) memory implementations.

Figure 2: Graded mesh of Jonathan Shewchuk’s key. The
parallel refinement is guided by a quadtree.

Conclusions and Work In Progress

The approach we developed allows the use of sequential
COTS for guaranteed quality parallel meshing.

Currently, we are working on extending our results to graded
meshes like the one shown in Fig. 2 by using a quadtree instead
of a uniform lattice, and to 3 dimensions.
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Tightening: Curvature-Limiting Morphological Simplification
Jason Williams and Jarek Rossignac

Given a planar set S of arbitrary topology and a radius r, we define an r-tightening of S,
which is a set that has a radius of curvature everywhere greater than or equal to r and that
only differs from S in a morphologically-defined tolerance zone. This zone, which we
call the mortar, contains only the details of S, such as high curvature portions of its
boundary, thin gaps and constrictions, and small holes and connected components. We
describe how to approximately compute r-tightenings for shapes represented as binary
images using constrained, level set curvature flow.

Our work addresses a formulation of the shape smoothing problem different from
those given in most prior art. The energy minimization-based fairing methods in the
CAD/CAM literature (such as [3]) and the various polygon mesh smoothing techniques
in the graphics literature (such as [2]) typically do not guarantee a bound on curvature or
confine shape changes to a tolerance zone like the mortar.

The mortar, which we introduced in [7], is defined in terms of the morphological
operations of rounding and filleting, which are described in detail in [4]. S rounded by r,
denoted R(S), is the union of disks of radius r contained in S, while S filleted by r,
denoted F(S), is the complement of the union of disks contained in the complement of S.
The mortar is F,(S)-R(S). It is empty away from thin and high-curvature regions of S,
and around those regions it is a subset of all points within a distance r of the boundary of
S.

We define a simple closed curve C lying in a set T as tight with respect to T if it
locally minimizes length, so that there exists a ®such that for all t and all ®< @

d(C(1),C(t+D) = @ where d(A,B) is the length of the shortest path connecting A and B in
T and C is parameterized by arclength. We define a point on the boundary of a shape as
concave if the line segment connecting the intersections of a small circle centered on the
point with the boundary lies completely outside the shape. Tight loops through a set
consist of concave portions of its boundary connected by tangent line segments. Because
concave portions of the boundary of the mortar have a radius of curvature greater than or
equal to r, if we define an r-tightening of S as a set T, R(S) @ T ® F(S), such that the
bounding loops of T are tight with respect to the mortar of S, it follows that the boundary
of an r-tightening also has a radius of curvature greater than or equal to r.

When R/(S) and the complement of F,(S) each consist of a single connected
component, the tightening is unique, and its boundary is the shortest loop around R (S)
lying in F(S). In this case the tightening corresponds to the relative convex hull or
minimum perimeter polygon [6] of R (S) in F.(S). When R (S) and F,(S) have more
complex topologies, there may be several different tightenings, each of which may have
holes and multiple connected components

We conjecture that for shapes of arbitrary topology represented as binary images,
level-set curvature flow [5] constrained to the mortar always converges to a tightening,
which includes as a corollary that a tightening always exists. In our implementation of
curvature flow, we initialize the level set function @ to be the signed Euclidean distance
to the boundary of the core of the input shape, approximately computed using
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Danielsson’s vector propagation algorithm [1], which we also use for implementing the
morphological operations. At each iteration, we compute V, = -F IVVI|, where F is the
velocity of the level set, which is equal to the curvature in the mortar and zero outside the
mortar. The curvature is given by

2
— —ale2

2
Xy X + yw X

3/2

=)

Where IVVI = (V ?+V »)'?, and the partial derivatives are computed using finite
differences. We then compute V (t+At, X, y) =V (t, X, y) + At * V (t, X, y), where At is
inversely proportional to the maximum value of F at time t, so that the level set crosses at
most one pixel each iteration. During most iterations, we only update V in a narrow band
of pixels around the zero level set.

Curvature flow converges slowly where the radius of curvature spans several pixels.
We therefore downsample the image representation of the core by a factor of two until r
corresponds to 1-2 pixels. We perform the flow at this coarse resolution, then iteratively
upsample by a factor of two and re-perform the flow. We find we need less than 100
iterations at each level of resolution. We anticipate adapting this technique to generate
three-dimensional results using mean curvature flow.
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Compact Data Representations and their
Applications

Moses Charikar
Princeton University

Several algorithmic techniques have been devised recently to deal with large
volumes of data. At the heart of many of these techniques are ingenious schemes
to represent data compactly. This talk will present some constructions of such
compact representation schemes (also referred to as sketches) for estimating dis-
tances between sets, vectors, and distributions on an underlying metric (where
distance is measured by the Earth Mover Distance (EMD)). The construction
of these compact representation schemes is motivated by techniques used in
approximation algorithms to round solutions of LP and SDP relaxations for
optimization problems. There are interesting connections between such sketch-
ing methods and low distortion embeddings of metric spaces into ¢;. Such
compact representation directly lead to efficient approximate nearest neighbor
search algorithms. We will also see how such schemes lead to efficient, one-pass
algorithms for processing large volumes of data (streaming algorithms).

Finally, T will talk about some recent work applying these ideas to designing
compact data structures for content-based image retrieval systems. The main
challenge here is to achieve high-quality similarity searches while using very
compact meta-data. We adapt the ideas from the sketch constructions for EMD,
as well as other ideas from embeddings of normed spaces to produce compact
sketches for images. I will discuss results from a prototype implementation
on a database with 10,000 images. Our results show that our method can
achieve more effective similarity searches than previous approaches with meta-
data significantly smaller than previous systems.

The work on content-based image retrieval is joint work with Qin Lv and
Kai Li at Princeton.
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NEARPT3 — Nearest Point Query in E3 with a Uniform Grid

[Extended Abstract]

W. Randolph Franklin
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geom@wrfranklin.org, http://wrfranklin.org

1. INTRODUCTION

We present NEARPT3, an algorithm and preliminary imple-
mentation to preprocess a large set of fixed points and then
perform nearest point queries against them. With fixed and
query points drawn from the same distribution, NEARPT3’s
expected preprocessing and query time are O(N), with a
very small constant factor. NEARPT3, designed for large
datasets, has been tested on the largest datasets in the Geor-
gia Tech Large Geometric Models Archive, [7]. Therefore,
processing tens of millions of points is quite feasible.

The prior art includes various data structures and algo-
rithms for variants of nearest neighbor searching. The cost
of a Voronoi diagram, [6], in E* is data dependent, amd
runs from Q(N log N) to O(N?) in time and space for pre-
processing, with each query costing 0(log N). Range trees,
[6], cost (N log N) time to preprocess, with each query also
costing 6(log N). ANN (Approximate Nearest Neighbors),
[2], is a C++ library for approximate and exact nearest
neighbor searching in E¢, allowing a variety of metrics, im-
plemented with several different data structures, based on
kd-trees and box-decomposition trees. All these algorithms
and data structures are more general, hence bigger, than
NEARPT3, which is optimized specifically for the Lo metric
in E2, although its ideas would generalize.

NEARPT3 appears to be the only method that enthusias-
tically rejects hierarchical data structures and search tech-
niques. Trees and subdivision searching are more robust
against adversarially chosen input. However, we believe,
based on tests on real data, that they are often suboptimal in
practice. This is true even when the real data is moderately
unevenly distributed. The extreme data unevenness that
would destroy NEARPT3’s performance would also force hi-
erarchical data structures to have many levels. In that case,
where the hierarchies would then be faster than NEARPT3,
though not fast, a shallow hierarchy would perhaps be the
least slow.

NEARPT3 has three stages, as follows. The data structure is
a uniform grid, [1, 4].

Prepreprocess: This step, which does not depend on the
data, need be performed only once. Hence it is ex-
cluded from the time statistics, just as the compilation
time is also excluded. Indeed, this prepreprocessing
could be forced into the C++ compilation step us-
ing the template specialization facilities, though that
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would be silly.

1. Generate the coordinates (z,y, z) of all grid cells
with 0 <z <y < z < R for some fixed R.

2. Sort them by +/x? + y? + 22.

3. Pass down the list in order. For each cell ¢;, find

the last cell, c2, whose closest point to the origin
is at least as close as the farthest point of ¢;. Call
c2 the stop cell.
Since the stop cells are monotonically increasing,
all this requires only one pass down the cell list.
The point is that if a point has been found in ¢;,
we have to continue searching through c2 to be
sure of finding any closer points.

4. Write the sorted list of cells and stop cells to a
file.

Preprocess: Here the fixed points are built into the data
structure.

1. Compute a uniform grid resolution, G from the
number of fixed points, Ny or get it from the user.
A reasonable value is G = r{/Ny, for 1/2 <r <
2.

2. Allocate a uniform grid with one word per cell, to
store a count of the number of points in each cell.

3. Read the fixed points, determine which cell of the
uniform grid each would fall in, and update the
counts.

4. Allocate a ragged array for the uniform grid, with

just enough space in each cell for the points in
that cell.
A ragged array contains storage for the points
plus a dope vector pointing to the first point of
each cell. The total variable storage is one word
per cell, plus the storage for the points.

5. Process the fixed points again, computing for a
second time the cell that each falls into. This
time, store each point in its proper cell.

The goal is to minimize both the storage used
and the number of storage reallocations. Storage
reallocations become especially costly as the pro-
gram’s memory working set approaches the com-
puter’s available real memory.

A possible alternative would be to use a linked
list for the points in each cell. However, the space



used for the pointers would be significant, and the
points in each cell would be scattered throughout
the memory, which might reduce the cache per-
formance.

Another alternative would be to use a C++ STL
vector, which reallocates its storage as it grows.
Our experience finds this to be very suboptimal.

Query: This reports the closest fixed point to a query
point.

1. Determine which cell, ¢, contains the query point.

2. Using the sorted cell list computed in the prepre-

processing step, spiral out from ¢ until a cell with
at least one point is found. Often this is ¢ itself.
For each cell with coordinates (z,y,z) in the
sorted cell list, up to 47 other reflected and ro-
tated cells are derived, such as (—z, z,y). If any
ordinate is zero, or any two are equal, there will
be fewer other cells.
It would be possible to do this reflection, rota-
tion, and duplicate deletion in the prepreprocess-
ing stage. This would cause a much larger sort
cell list. However it would reduce the query time
because that code would have fewer conditionals,
which should make it more optimizable.

3. Continue spiralling out until ¢’s stop cell to find
any closer points, if one exists.
This spiralling process is conservative since it ig-
nores the location of the query point inside c.
On the average 200 cells are searched for each
query, but checking each cell is very fast.

2. TESTS

NEARPT3’s performance is data dependent. An improper
choice of input, such as query points that are very far from
all the fixed points, will be intolerably slow. Nevertheless,
all the data sets tested so far perform quite well, including
these:

# ” CPU

Data Source fixed . time,
. queries

set points secs
name
Bunny GIT 17973 17974 1.9
Bone6 GIT 284818 284818 28
Dragon GIT 218882 218883 21
Hand GIT 163661 163662 16
Uniform  generated 1M 1M 128
random

The environment is a 2002-vintage IBM T30 Thinkpad lap-
top computer with 768 MB of memory, a 1600 MHz Pentium
4 Mobile CPU, and Intel’s icpc 8.1 C++ compiler, with all
optimizations enabled. The times include reading the data
and writing the results. These experiments also validate
that the cost is linear. The preprocessing cost is ©(NV).
Each query may cost O(N), but typically costs ©(1).

NEARPT3’s cost is affected by the grid resolution, however
values within a factor of two of the optimum typically change
the time less than a factor of 2.
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3. EXTENSIONS

NEARPT3 could return approximate nearest matches in
much less time since the spiral search could stop sooner.
In E¢ for other d, the cost of searching is exponential in d,
as for any search procedure.

NEARPT2 is a simplified version for preprocessing and
searching for points in E?. We tested 1M queries against
1M fixed points, both sets randomly generated, using
NEARPT2, CGAL 3.0.1’s NEAREST_NEIGHBOR_SEARCHING,
[3], and ANN 0.2, [5]. A proper choice of compiler flags
would probably speed both CGAL and ANN, but not re-
duce their storage cost. None of these tests required any
data I/O since the input was randomly generated and the
output not written. Performing 1M queries against 1M fixed
points cost as follows.

Program Time Storage
NEARPT2 9.4 46MB
CGAL NNS 41 120MB
ANN 41 128MB

We then tried 10M fixed and 10M query points but CGAL
and ANN required too much memory. NEARPT2 used
458MB and 98 seconds.

4. SUMMARY

The general lesson of NEARPT3 is that simple data struc-
tures like the uniform grid can be quite efficient in both time
and space in E°.
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Algebraic Number Comparisons for Robust Geometric Operations

John Keyser, Koji Ouchi
Department of Computer Science
Texas A&M University

In this talk, we describe a method for exact comparison of algebraic numbers, with
application to geometric modeling.

Motivation: Computations with algebraic numbers are of key importance in several
geometric computations. Algebraic numbers arise as solutions to systems of
polynomials—a common operation in many geometric applications, particularly those
involving curved objects. Polynomials regularly describe the relationships between even
basic geometric objects, for example the (squared) distance between two points. For more
complex curved geometric objects, polynomials are often used to describe the actual
shapes. Finding solutions to systems of polynomials thus becomes a key operation in
numerous geometric applications.

Unfortunately, the robustness issues well-known in traditional computational geometry
become even more significant when dealing with algebraic numbers and curved
geometry. Bounding and handling the numerical error that arises in these computations
becomes more problematic, as does the detection and elimination of degeneracy
problems. For reliable computation on curved geometry, we therefore need robust
operations on algebraic numbers. We choose to use an exact-computation approach,
achieving robustness by eliminating numerical error, while supporting straightforward
operations even in the presence of degeneracies.

Our work is particularly motivated from the field of computer-aided geometric design.
Finding intersections of geometric objects involves solving systems of polynomials,
usually of moderate degree in a few variables. Our methods apply, however, to a far
wider range of problems.

Background: Our earlier work focused on techniques for exact manipulation of
algebraic curves and 2D points [MAPCO0], and applied these to solid modeling,
producing the first exact boundary evaluation system [ESOLID04]. Although this work
yielded greater robustness by eliminating numerical error, degeneracies could not be
handled effectively.

Computations with algebraic numbers has been a topic of recent research interest among
a variety of other researchers. LEDA supports a limited set of constructions for algebraic
numbers, though it does not solve polynomial systems [LEDA]. The Core library
supports a wider variety of number types, including real algebraic numbers [CORE].
Such exact computation approaches have been incorporated in larger projects, such as
Exacus [EXACUS] and CGAL [CGAL]. Recently, Emiris and Tsigaridas have
developed an approach for exact comparison of algebraic numbers of relatively small
degree (at most 4) that is asymptotically faster than an expliit solution [ET04].
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Major Results: We describe a method for comparing complex algebraic numbers
exactly. More precisely, one can know whether or not the real and imaginary parts of
given a pair of complex algebraic numbers are identical. In particular, one can test
whether or not the real and imaginary parts of a given complex algebraic number vanish.

Our method is based on the rational univariate reduction (RUR). The RUR computes
common roots of systems of multivariate polynomials with rational coefficients. The
roots are represented in terms of a set of univariate polynomials with rational coefficients.
These polynomials, when evaluated at the roots of another univariate polynomial, yield
the coordinates of the common roots of the original system. The RUR can be computed
exactly, i.e. the coefficients of these polynomials can be computed to full precision.

As a key advantage over our earlier methods, this RUR method works even in the
presence of “degenerate” situations. For example, the RUR approach handles roots of
high multiplicity, finds roots at singularities, and works even when the underlying set of
roots is positive dimensional. As such, it offers a general method for achieving robust
calculations with algebraic numbers.

Our RUR implementation gives an exact representation of points with algebraic
coordinates. This allows us to exactly determine geometric predicates such as whether a
point lies on a curve or surface. We can also determine how surfaces intersect, e.g.
whether the surfaces meet in “general position.” Thus, our representation is very general,
and can serve as a single representation for all such algebraic points. Although this point
representation is more robust than our earlier approach that could not represent
degeneracies, it is also less efficient. We therefore propose the use of the RUR
computation in a hybrid fashion, using it in cases where there are likely to be difficulties
due to degeneracies.

We describe several applications, with special emphasis on geometric modeling. In
particular, we describe a new implementation that has been used successfully on certain
degenerate boundary evaluation problems. We describe how the RUR can be used to
detect when degeneracies occur, and how it can then be combined with a numerical
perturbation scheme to achieve an overall more robust boundary evaluation..
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An Efficient k-Center Clustering Algorithm for Geometric Objects

Guang Xu and  Jinhui Xu
Department of Computer Science and Engineering
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1 Overview

Clustering is a fundamental problem in computational geometry and finds numerous applications in many
different fields such as data mining, image processing, and pattern classification and recognition. Extensive
research has been done on investigating theoretically and/or practically efficient approaches for solving
various variants of this problem, and a number of important results have been obtained in recent years.
Among many of its variants, the Euclidean k-center clustering problem (or more generally, the k-center
clustering problem in a metric space) of a set of points has received considerable attention from the fields of
computational geometry and approximation algorithms, and an O(n log k)-time, 2-approximation algorithm
has been obtained [4, 5] by using a farthest point method. The success of this constant approximation
algorithm relies on a key fact that the distances among the set of points satisfy the metric property. This
algorithm, although simple, is actually quite close to the limit of approximation. It has been shown that
approximating the Euclidean k-center problem within any ratio smaller than 1.822 is NP-hard [3].

In this paper, we consider an interesting generalization of the Euclidean k-center clustering problem,
called k-center clustering problem of point sets (or KCS for short) in d-dimensional Euclidean space R.
In the KCS problem, we are given a sequence of finite point sets in R? space, denoted by Si,Sa,..., Sy,
respectively, and an integer £ > 1, and are required to find k congruent spheres By, Bs, . . ., Bi of minimum
radius so that for each S;,1 < ¢ < n, there is at least one ball B;,1 < j < k, containing all points in S;. The
KCS problem models the k-center clustering problem of a set of bounded geometric objects represented
by polyhedra. This is because for any polyhedron, it is sufficient to consider the vertices of its convex
hull. Different from the ordinary k-center clustering problem, in our KCS problem, the geometric objects
represented by S; and Sj, for any %, j < n, could overlap with each other.

The KCS problem we study is motivated by applications in biology where a set of replication/transcription
sites, each represented by a 3-D polyhedron, needs to be clustered into clusters to form replication or tran-
scription zones for studying the behavior of chromatic domains in cell nucleus. It also appears in many
applications of the Euclidean k-center clustering problem where each point in the k-center clustering prob-
lem is actually the representative point (e.g., the center) of some geometric object. When the sizes of
the geometric objects are small enough, simplifying each object to a point does not affect the quality of
clustering too much, since the distance function of the set of objects can be well approximated by that of

the representative points. However, when the size of each object is large, the distance between two objects



could be significantly different from that of their representative points. Thus the quality of the obtained
clustering through representative points could be rather poor.

In general, the distances among a set of geometric objects do not satisfy the triangle inequality, thus
making almost all previously known k-center clustering algorithms fail. To overcome the difficulty caused
by the loss of the triangle inequality property, we use the ideas of shape simplification and core set. More
specifically, we first simplify each object (or point set) to some simple geometry shape, and then determine
several representative points from each simplified shape. The representative points of each object may not
belong to its original object. In order to achieve a quality solution, the simplified shapes and representative

points should have the following features:
1. The size and shape of the original objects are somewhat preserved.

2. The position of the original objects are well reflected.

Based on several interesting observations, we will show that each geometric object can be represented
by a small set of representative points, and an efficient 3-approximation algorithm can be obtained by

clustering the set of representative points. In summary, we prove the following theorems.

Theorem 1 There is an O(m+nlog k) time 3-approzimation algorithm for the k-center clustering problem

of point sets in R? space, where m = E;ZL |S;].

The constant hidden in the O-notation of the running time has exponential dependence on the dimension

d. If the dimension d is very high, we have the following result.
Theorem 2 There is an O(de—Z” +dnk+ Eo%) time 3+e-approximation algorithm for the k-center clustering

problem of point sets in R® space.
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Analysis of Layered Hierarchy for Necklaces

Kathryn Bean*

1 Introduction

Molecular configurations can be modeled as sets of
spheres in 3D. By imposing geometric constraints
on the spheres based on molecular biology one
can apply efficient techniques [3], for example, to
analyze the complexity of molecular surface [1].
Guibas et al.[2] introduced a model called neck-
lace that finds applications in computer graphics,
computer vision, robotics, geographic information
systems and molecular biology. They studied two
data structures, wrapped hierarchy and layered hier-
archy, for representing necklaces and for performing
collision tests.

Guibas et al. [2] proved that the wrapped hierar-
chy admits a separating family of size O(n?~2/4).
This is the first subquadratic bound proved for col-
lision detection using predefined hierarchies. Al-
though the layered hierarchy can be used for colli-
sion detection, “no subquadratic bound on the size
of a separating family based on the layered hierar-
chy is currently known” [2]. The main result of this
paper is that the same upper bound holds for the
layered hierarchy.

One of the advantages of layered hierarchy over
wrapped hierarchy is the “local” definition of the
cages. We propose a modification of the layered
hierarchy so that some deformations of a necklace
can be maintained efficiently. In particular, we show
that rigid-body conformational changes can be han-
dled in O(logn) time only.

2 Necklaces and Bounding-Volume Hierarchies

We define the notion of necklace in a slightly more
general form!.

Definition 1 (Necklace) A necklace is a se-
quence of beads N'=(By, Bo,...,B,) in R? space
that has the following properties:

1. The radius of each bead is in the interval

*Department of Computer Science, University of Texas at
Dallas, Box 830688, Richardson, TX 75083, USA.

1We do not require that any two consecutive beads along
the necklace have a point in common.
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[pmina pmax] where Pmins Pmax aT€ pOSitiU@ con-
stants.

2. The distance between the centers of two adja-
cent beads is bounded by a constant d.

Collision detection problem arises in such appli-
cations as protein folding and protein docking. A
bounding volume hierarchy is a common approach
that models and detects collisions and self-collisions
of different geometrical shapes including necklaces.
This approach reduces computational time since it
suffices to test collisions among bounding volumes.

Definition 2 (Hierarchies) For a necklace N,
let T(N) denote the balanced binary tree defined re-
cursively so that, for an internal node v, its left
subtree contains |m/2] leaves where m is the num-
ber of leaves below v. Both wrapped and layered
hierarchies have a cage C(v) associated with a node
v of T(N) and the cages of leaves correspond to
the beads, C'(v) = B; for i-th leaf v where i
1,2,...,n. For an internal node v, the cage is de-
fined differently for two hierarchies:

e Wrapped hierarchy. The cage C(v) is the
smallest enclosing ball of beads corresponding
to the leaves below v.

e Layered hierarchy. The cage C(v) is the small-
est enclosing ball of the cages corresponding to
the children of v.

The layered hierarchy has many advantages over
the wrapped counterpart. For a necklace size n, the
layered hierarchy can be constructed in linear time
since the cage of each node can be computed in O(1)
time. The wrapped hierarchy can be constructed
in O(nlogn) time by using linear-time algorithm
[4] for computing the minimum enclosing sphere
MES. A simpler algorithm for computing MES in
expected O(n) time can be used. Note that the
algorithm for the layered hierarchy is even simpler.

3 Necklace Deformation with Layered Hierarchy

Modeling conformation changes is required in pro-
tein docking, robotics and computer graphics. One



type of local deformation - rigid-body conforma-
tional change [5] - can be defined as follows.

Definition 3 (Conformational Change) Let
N = (B1, Ba,...,By) be a necklace and let i be an
index from 1 ton — 1. Let M be a rigid motion in
R? (the composition of a translation and a rota-
t’LO’ﬂ) If Nl = <Bl, ey Bi7 M(Bi+1)7 ey M(Bn)>
is a necklace then N is a rigid-body conformational
change of N

We show how to modify the layered hierarchy
so that a rigid-body conformational change can be
done efficiently. We store a rigid motion M (v) as-
sociated with a vertex v of T(N). Each rigid mo-
tion M (v) is a composition of a 3D rotation R(v)
and a translation T'(v). The rotation can be rep-
resented as a quaternion or a rotation matrix. We
assume that the inverse rigid motion M ~!(v) can
be computed in O(1) time. We call the hierarchy
augmented with rigid motions as augmented layered
hierarchy.

The augmented layered hierarchy defines the po-
sition of a bead B; in the space as follows. Let vy =
Vroots U2, - - - , Uk D€ the path from the root of the lay-
ered hierarchy to the vertex with the bead B; and
let ¢; be the center of the bead stored in v;. Then
the real position of B; is My(Ma(... Mi(c;)...))
where M; = M(v;),j = 1,...,k. Let I denote
the identity transformation, i.e. I(p) = p for any
p € R3.

Theorem 1 The augmented layered hierarchy can
be maintained in O(logn) time if a rigid-body con-
formational change is applied.

4 Cages of Layered Hierarchy

Although the layered hierarchy can support rigid-
body conformational changes efficiently (if aug-
mented as in previous section), the wrapped hierar-
chy occupies smaller space since its cages are always
no larger that the corresponding cages of the layered
hierarchy. Despite this evidence we show that the
cages of the layered hierarchy have the same upper
bound as the corresponding cages of the wrapped
hierarchy.

Let T, denote the subtree rooted at a vertex u of
T(N) and let n;(u) be the number of leaves in T),.

Theorem 2 The radius of any cage C(v) of layered
hierarchy T(N) is at most 6(ni(v) — 1)/2 4+ pmax,
where ny(v) is the number of leaves for a tree is
rooted at v.

67

5 Collision Detection for Layered Hierarchy

An useful tool for the collision testing is a separating
family [2].

Definition 4 (Separating Family) A separat-
ing family ¥ = {(u,v)} is a set of pairs of nodes
of a wolume bounding hierarchy satisfying the
following properties:

1. If (u,v) € ¥ then C(u) and C(v) are disjointed.

2. For any two non-adjacent beads B,, B,, € N,
there is a pair (u,v) € ¥ such that B, C C(u)
and By, C C(v).

To derive a bound for the layered hierarchy we
analyze a separating family ¥ built by the follow-
ing algorithm for collision detection. The algorithm
starts with the pair @ = {(root,root)} and, for a
pair (u,v) € Q such that C(u) N C(v) # 0, replaced
it by at most 4 pairs of children of v and v. Our
analysis is based on the analysis of the wrapped hi-
erarchy by Guibas et al. [2].

Lemma 3 If (C(u),C(v)) € ¥ then the cage C(v)
is contained in K — C(u) where K is the ball con-
centric with C(u) and of radius 4(dni(u) + Pmax)-

Theorem 4 Let Hy, be the layered hierarchy for a
necklace N in R, d > 3 with n beads. Algorithm
2 builds the unique separating family ¥ for N of
size O(n2_2/d). This bound is asymptotically tight
in the worst case.
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